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ABSTRACT 

One outstanding challenge to understanding the behaviors of organisms and other 

complexities found in nature through the use of computational fluid dynamics 

simulations lies in the ability to accurately model the highly tortuous geometries and 

motions they generally exhibit.  Descriptions must be created in a manner that is 

amenable to definition within some operative computational domain, while at the same 

time remaining fidelitous to the essence of what is desired to be understood. Typically 

models are created using functional approximations, so that complex objects are reduced 

to mathematically tractable representations. Such reductions can certainly lead to a great 

deal of insight, revealing trends by assigning parameterized motions and tracking their 

influence on a virtual surrounding environment. However, simplicity sometimes comes at 

the expense of fidelity; pared down to such a degree, simplified geometries evolving in 

prescribed fashions may fail to identify some of the essential physical mechanisms that 

make studying a system interesting to begin with. In this thesis, and alternative route to 

modeling complex geometries and behaviors is offered, basing its methodology on the 

coupling of image analysis and level set treatments. First a semi-Lagrangian method is 

explored, whereby images are utilized as a means for creating a set of surface points that 

describe a moving object. Later, points are dispensed with altogether, giving in the end a 

fully Eulerian representation of complex moving geometries that requires no surface 

meshing and that translates imaged objects directly to level sets without unnecessary 

tedium. The final framework outlined here represents a completely novel approach to 

modeling that combines image denoising, segmentation, optical flow, and morphing with 

level set- based embedded sharp interface methods to produce models that would be 

difficult to generate any other way. 
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CHAPTER 1 

INTRODUCTION TO MODELING COMPLEX GEOMETRIES, 

MOTIONS, AND FLUID TRANSPORT MECHANISMS 

1.1 Motivation 

 

Something is said to be complex when it is difficult to analyze or disentangle [1]. 

Although it takes many forms, the quality of complexity is easily recognized when 

encountered; it is marked often with large numbers of interrelated components, actions 

that are not easily predicted, or other physical characteristics that cannot be described 

succinctly without a good deal of abstraction. Living organisms represent well the 

essence of complexity, and thus much of this work is directed toward developing simple 

and effective methods for modeling the time-dependent geometries and fluid transport 

mechanisms found in biological systems. 

Fluid motion, specifically that generated by the motility of animals’ internal and 

external surfaces for the purposes of locomotion through a fluid environment, 

transporting heat and mass in solution or suspension, or producing and hearing sound, 

merits investigation because such processes are necessary for sustaining life.  More than 

10
9
 years of evolved organic forms have lead to the earth’s current population of species;  

whether viewed from a teleological or a mechanistic vantage, these species represent 

iterated designs that have remained successful for a very long time, in a system that often 

rewards efficiency with longevity [2-3].  Thus, life is established as something which 

imparts a great deal of engineering perspective in the very fact that it exists. 
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Locomotion through fluids is, for the most part, an external flow problem.  When 

animals swim or fly, actuation of their external surfaces and appendages imparts 

momentum onto surrounding fluid material, which in turn generates the reactionary 

forces necessary for propulsion and control.  In aqueous environments, undulatory 

motions of an elongated body or tail provide a fundamental means of propulsion that may 

be found in a large number of living examples, from primitive single-cell protozoa to the 

spermatozoa of higher species and the anguilliform swimming motion of the common eel 

[2].  The prevalence of this mode of transport among aquatic life suggests a level of 

optimality that warrants detailed study, and will be investigated as part of this work using 

the American eel (Anguilla rostrata) as a prototype. 

Equally important to sustaining life’s processes is the motility of internal surfaces, 

which produce fluid motions that transport heat and mass within living systems.  The 

respiratory system, the cardiovascular system, and the gastrointestinal tract are all clear 

examples, and each is marked by the presence of unsteady or pulsatile flows through 

geometrically elaborate, deformable containing vessels over a wide range of Reynolds 

numbers [2].  Detailed studies of such complex systems have lead to enhanced insights 

that have proven useful in the advancement of biological sciences and engineering 

designs: Clinicians now have a greater understanding of the distribution of wall shear 

stresses throughout the circulatory system, and its role in the advancement of lethal and 

common disease states such as atherosclerosis, stenoses, and aneurisms [4]; peristaltic 

pumps transport intravenous fluids and dialyzed blood in the same way that the veins or 

small intestine might, with predictable regularity and in a manner which minimizes 

damage to delicate constitutive structures, such as red blood cells and platelets; and 
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peristaltic mixing throughout the gastrointestinal tract is suspected as one of the key 

mechanisms responsible for rapid nutrient absorption and subsequent reactions that 

enable energetically efficient movement [5]. 

Adding another layer of complexity is the fact that biological fluids are 

themselves complex systems. Chyme passing from the stomach mixes with pancreatico-

biliary secretions to create a multiphase chemical-laden slurry with interactions occurring 

across a wide range of scales, from molecular to visible [5]. Blood, too, is made up of 

many disparate structures related through a multitude of coordinated interactions, all with 

the same singular purpose as all other biofluids: maintaining life. Of course, being alive is 

not a prerequisite for complexity; there are countless complex processes involving 

inanimate objects. Flows through porous media, multiphase transport phenomena, fluid-

structure interactions, etc. are all sufficiently difficult to analyze and solve to earn the 

adjective ―complex,‖ and so describing and modeling them is not a straightforward 

undertaking. As such, the work herein attempts to make a contribution in the way of 

offering a route to modeling complex objects and behaviors in a general sense, with a 

wide range of applications. However, biological examples are often favored here as bases 

for methodological development due to the interest they hold outside numerical 

treatment. 

1.2 The Conventional Route to Numerical Biofluid 

Calculations 

 

Because biological systems change shape continually during movement, and 

because they generally do not come in shapes that are easy to define functionally,  the 
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tasks of describing their surfaces and interaction with fluids and computationally meshing 

them for CFD analysis have proven challenging.  Current simulation techniques reported 

in the literature concerning animal locomotion primarily involve defining simplified 

model geometries based upon measurements taken of animals directly, followed by 

prescribing some sort of motion in order to replicate observed behaviors, e.g. modeling a 

fish as an ellipsoid propelled by an oscillating flat plate [6-7].  This makes mathematical 

representation of material reality more tractable. One readily apparent drawback to these 

current techniques is the intensity of labor involved in creating such models; for instance, 

animals must be measured in several places to allow for geometric reconstruction to 

proceed, and a surface mesh must be manually generated so that the model can be 

imported into a flow solver.  The tedious nature of surface generation and kinematic 

analysis performed in this way may compromise resolution of finer animal body 

structures and motions in favor of a more qualitative description that is geometrically 

easier to deal with. 

An alternative approach employs image analysis to directly define the shapes of 

complex objects in a computational flow domain based on their visual appearance.  This 

allows for a more accurate representation of geometry and motion, and is an ongoing area 

of active research, particularly in the fields of medical imagery and computer vision [8-

17].  However, conventional CFD modeling approaches still require surface mesh 

generation (or volume mesh generation, in 3D) in order to define complex and/or moving 

boundaries, making for tedious implementation (Figure 1-1).  It is therefore desirable to 

develop a modeling framework that bypasses mesh generation altogether. To this end, we 
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propose a completely Eulerian method which maps imaged objects directly onto a 

Cartesian mesh for CFD treatment using level set representations. 

1.3 Introduction to Image Analysis 

 

Digital images are made up of square pixels (or cubic voxels in 3D imaging), each 

possessing a single intensity or color value.  Intensity values range from zero (no light 

intensity, or black) to 255 (white) with 254 shades of grey in between.  Color values 

follow the same pattern, but with (              ) vectors replacing scalar intensity 

levels.  E.g. black has a vector representation of (     ), while medium green has a 

representation of (       ), etc. A color image has            , or about 16.8 

million, possible pixel hues. Groups of pixels give an image its meaning, concertedly 

transforming it from an array of numbers or vectors to a picture that can be visually 

related to something real.  More pixels describing a scene yield finer detail, or better 

resolution, and lend greater fidelity to objects being depicted. 

1.3.1 Image Segmentation   

 

Image segmentation is the process of delineating a digital image into different 

parts the way humans might during visualization, based upon relationships between 

groups of pixels that make up the image [13, 18].  More simply put, segmentation is the 

act of recognizing the outlines of shapes and distinguishing them from one another.  

Modern segmentation methods in the literature treat an image and its pixel values as a 

topological field of sorts, on which segmentation can be accomplished by computing 

pixel gradients or by minimizing a functional over the pixel field in a manner analogous 
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to energy minimization [13, 18-19].  In general the more complex an image is according 

to our visual system, the more complicated a segmentation algorithm must be to 

adequately separate the scene into distinct objects. 

The proposed modeling framework is based entirely on imaging, and so 

segmentation is one of the primary steps necessary for the transformation from imaged 

object to modeled surface to take place. Thus, quality segmentation is a key factor in the 

method’s overall success, and warrants thorough investigation; the process is discussed in 

detail in Chapters 3 and 4. 

1.3.2 Image Denoising 

 

All real images have some kind of intrinsic corruption that is introduced during 

the acquisition process, whether it is the photoelectric noise possessed by digital images 

or the film-grain noise seen in photographs [20]. Thus, denoising makes up a large part of 

image processing. Here, we are primarily interested in using images to generate models 

via segmentation; a good model needs a good segment, and a good segment in turn needs 

a good noise-free image to start from. Unfortunately, even if noise has been minimized 

during the acquisition process to the fullest extent possible, circumstances typically 

dictate the need for some smoothing before an image is ready for conversion to a CFD 

model. 

Image denoising algorithms are numerous, but most stem from the same 

diffusion-based methodology, a description of which comprises part of Chapter 4. Some 

methods emerging in the literature more recently involve a multi-resolution treatment 

provided by wavelet analysis using the discrete wavelet transform (DWT). In fact, the 
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DWT has become pervasive in several aspects of image processing, such as compression 

and feature identification, and so shall be given due introduction next for completeness. 

1.3.3 The Discrete Wavelet Transform (DWT) 

 

Like Fourier analysis, wavelet analysis is a means of quantifying a signal  ( ) in 

terms of a mathematical decomposition, though there are certainly some important 

differences between the two. The Fourier transform (Equation 1.1) is multi-frequency in 

nature, so that a signal may be represented as a collection of sinusoids possessing 

different frequencies and amplitudes:  

  ( )  
 

  
∫  ( )      

  
  , (1.1) 

where 

                   . (1.2) 

Unfortunately, signals cast in Fourier space suffer from a loss of localized information 

due to the fact that signals  ( ) are being described with waves that extend infinitely for 

all time   from    to   . Thus singular changes in a signal will affect its Fourier 

representation everywhere in Fourier space, rendering it impossible to know the location 

of a unique signal feature; or in fact whether it is unique at all, rather than a collection of 

periodic contributions. 

 In practice, an exercise will never be performed in which an infinitely populous 

signal is analyzed; that would take far too long – infinitely long, actually. Real signals 

come in the form of discretely sampled data sets, and so a discrete version of the Fourier 

transform is used to represent them in terms of their discrete spectra: 
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∑    

  (
    

 
)   

   . (1.3) 

This of course runs into the same difficulty as its continuous counterpart, namely a loss of 

localized signal features accompanying the switch to Fourier space. 

 In addition, while a continuous signal can be brought back from Fourier space 

with fidelity using the inverse Fourier transform (Equation 1.4)  

  ( )  ∫  ( )     

  
  , (1.4) 

a discrete signal with local discontinuities suffers from ―Gibbs phenomena‖ when 

transformed back from Fourier space to physical space using the inverse discrete Fourier 

transform (Equation 1.5) 

    
 

 
∑    

 (
    

 
)   

   , (1.5) 

whereby large oscillations arise near signal discontinuities in the process of trying to 

represent them using continuous waves acting on a finite number of points. 

 In 1984, the wavelet transform was devised as a new method to overcome some 

of these difficulties inherent to Fourier analysis, prompted initially by a desire to better 

interpret seismic records [21]. Wavelet functions exist within a finite region (that is to 

say, they possess compact support), and so they can be scaled and shifted in ways that 

allow for signal location and frequency information to be preserved, rather than 

attempting to represent an entire signal using frequencies alone. This imparts wavelets 

with useful features like ―shrinkage,‖ or compression, and adaptive multi-scale resolution 

capabilities, and it has led to their extensive use in speech analysis and image processing 

and transmission [22]. 
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 Wavelet decomposition is performed using a pair of functions – a scaling function 

(Equation 1.6) and a wavelet function (Equation 1.7) – operating on a signal as a filter 

bank that separates it into frequency bands [23]. 

  ( )  ∑    (    )   
    (1.6) 

  ( )  ∑ (  )    (        )   
    (1.7) 

Here   denotes a discrete location within the signal  ( ), and   is the number of 

coefficients describing the scaling and wavelet functions of choice.  

 In 1988, the mathematician Ingrid Daubechies discovered a family of filter 

functions possessing the desirable characteristics of orthogonality and maximum flatness 

at their beginning and end positions     and     – traits which are especially 

amenable to discrete signal analysis [23]. Their utility has led to a certain pervasiveness 

of the Daubechies family of wavelets, to the point of becoming nearly a standard; all of 

the wavelet-based research publications referenced in this thesis employ Daubechies 

wavelets in some manner. 

 All Daubechies wavelets possess even numbers of coefficients, and satisfy three 

specific conditions [21]: 

1. The scaling function is unique and maintains unit area (signal ―energy‖ is 

conserved). 

∑   
   
          (1.8) 

2. Accuracy of the signal representation is maximized (to order    ). 

∑ (  )     
   
               

 

 
     (1.9) 

3. The wavelet system is orthogonal to allow for maximum compression of data. 

∑        
   
              (1.10) 
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∑   
    

          (1.11) 

For an in-depth treatment of these conditions, the reader is referred to [21, 23].  

Of the Daubechies wavelets, the Daubechies-4 (often written Daub4 or D4 for 

short) is commonly used in signal processing due to its compact support (the number 4 

denotes the fact that it possesses four coefficients), and as an instructional prototype due 

to its relative simplicity. Setting     in the three wavelet conditions just listed leads to 

the system of equations 

               (1.12) 

               (1.13) 

               (1.14) 

             (1.15) 

   
    

    
    

   , (1.16) 

which have the solution 

    
  √ 

 
 (1.17) 

    
  √ 

 
 (1.18) 

    
  √ 

 
 (1.19) 

    
  √ 

 
. (1.20) 

Coefficients    through    comprise the Daub4 filter coefficients, and together give the 

Daub4 scaling function (Equation 1.21) 

  ( )     (  )     (    )     (    )     (    ) (1.21) 

and Daub4 wavelet function (Equation 1.22) 

  ( )     (    )     (    )     (    )     (  ). (1.22) 
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Interestingly, the Daubechies functions cannot be expressed in closed form, but 

can only be constructed through iteration. The process of generating Daubechies 4 

scaling and wavelet functions may be illustrated following Newland [21]: Starting with a 

unit box situated on the interval      , the box is represented as ordinate 1 located at 

   . A single application of the scaling function (Equation 1.21)  ( ) to the signal 

gives four new ordinates           and    located at            and    . Applying  ( ) 

once again to the resulting signal gives eight new ordinates;    at     contributes 

  
           , and      at               and     ,    at       contributes 

       
      , and      at               and     , etcetera, so that the eight new 

ordinates take the values   
                        

                        
  

                   , and   
  at                            following the matrix 

scheme 

 ,  -  

[
 
 
 
 
 
 
 
 
 
   
   

   
   

    
  
 
 
 
 
 
 

  
  
  
 
 
 
 

  
 
  
  
  
  
 
 

 
 
 
  
  
  
  ]

 
 
 
 
 
 
 
 
 

[

  
  
  
  

] , -. (1.23) 

Continuing to iterate in this manner (as illustrated through six iterative steps in 

Figure 1-2) eventually leads to the fractal Daubechies-4 scaling function shown in Figure 

1-3. The Daubechies-4 wavelet function is generated in a similar fashion (Figure 1-4 and 

Figure 1-5) following the matrix scheme 
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The scaling function is also known as a lowpass filter, and it acts as a moving 

average over the data being analyzed and thus serves to give a smooth representation of 

the original signal. The wavelet function, on the other hand, is a highpass filter, which 

acts as a moving difference function that picks out ―bumps‖ in a signal [23]. The lowpass 

and highpass filters together make up an invertible system that allows a signal  ( ) to be 

separated into distinct frequency bands. 

 During application of the discrete wavelet transform, a multi-level representation 

is achieved by decomposing a signal into a series of scaling and wavelet coefficients 

representing increasingly large (doubling) signal intervals. The first level of the DWT 

decomposes the signal into level-1 scaling and wavelet coefficients    and   , then the 

second level decomposes the smooth signal representation    into a subset of level-2 

scaling and wavelet coefficients    and   , and so on, doubling the signal interval size 

until the largest scale possible has been reached (Figure 1-6).  

Since two linear operations are being performed separately on  ( ) to get the 

lowpass and highpass filter coefficients  ( ) and  ( ), the result would be a data set 

that doubles in size with each level of transformation if all points in the signal were 

represented in wavelet space throughout the process. Moreover, this would require that 

the scaling and wavelet functions continuously increase in support, doubling their number 
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of coefficients with each level of the transform. This is obviously undesirable from the 

standpoints of information storage and computational complexity. In practice, both of 

these problems are eliminated through signal decimation; that is, downsampling the 

signal population by half with each level of the DWT (Figure 1-7). As an example, if a 

signal is represented by, say, 128 points, the level-1 DWT will decompose the signal into 

64 scaling coefficients and 64 wavelet coefficients; the level-2 DWT further decomposes 

the 64 level-1 scaling coefficients into 32 scaling coefficients and 32 wavelet 

coefficients, and so on. If the original signal is a power of 2 in length, this process may be 

continued (with signal wrap-around) until the final wavelet space representation consists 

of 2 scaling coefficients and 126 wavelet coefficients. 

Figure 1-8 illustrates this process with a top hat signal represented by 128 points. 

Each level of the DWT gives a set of wavelet coefficients, and a set of scaling 

coefficients that represent a shifted and dilated version of the original signal. Most 

notable is the fact that a progression through multiple levels gives a multiscale 

representation of discontinuities in the signal, which is an important feature for coherent 

structure identification at scales of interest. This allows for a distinction to be made 

between signal noise, which tends to occur only at the smallest scales, and true features 

of interest, which have a signature across all scales, and will become pertinent in later 

chapters when image denoising is required. 

As a final note, it should be pointed out that decomposing a signal in multiple 

dimensions with the DWT is a straightforward matter. In 2-D, this is accomplished by 

taking the DWT of the signal in one direction, X or Y, then taking the DWT of that result 

in the other direction. Order doesn’t matter, as the result will be the same regardless. The 
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process is shown in Figure 1-9 using a 2-D top hat signal, and can be seen to be 

completely analogous to the 1-D transform, but with discontinuity detection now taking 

place in the horizontal (X), vertical (Y), and diagonal (XY) directions. 3-D 

transformation follows similarly. 

1.4 The Level Set Method 

 

The purpose of image segmentation within the image-based modeling framework 

being outlined here is to generate the solid surfaces that will be used to supply boundary 

conditions during fluid flow calculations.  Present work in our Computational 

Thermofluids Group employs a level set [24-25] based Cartesian grid method to model 

moving boundaries.  Methods in which interface effects are included in the discrete 

spatial operators acting in a continuum domain setting are called sharp interface methods, 

and the level set method falls into this category.  Critical issues that arise in developing 

sharp interface Cartesian grid methods for moving boundary problems are: 

i) Accurate representation of embedded interfaces- Explicit surface tracking 

(involving surface meshing and re-meshing) can be challenging for complex 

moving boundaries, particularly in the presence of sharp edges, cusps, 

instabilities and topological changes in the boundaries; geometric details such 

as intersections between the triangulated surface mesh and the underlying 

flow solver mesh need to be computed repeatedly.  

The level set technique presents a solution to these problems, because it is 

an implicit interface representation with built-in regularization due to the 

entropy-satisfying solutions obtained from level set advection.  In this 
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approach, the signed normal distance to an interface is stored at each mesh 

point in a narrow band field surrounding the interface.  The interface is 

implicitly contained in this information as the zero-level isocontour of the 

level set field, and can be deduced to desired accuracy with a combination of a 

dense Cartesian mesh and higher order interface tracking schemes.  

Representation of all interfaces (whether solid-fluid or fluid-fluid) using level 

sets facilitates simple discretization at computational points adjacent to 

interfaces. 

ii) Computing flows around immersed boundaries- Since interfaces are allowed 

to pass through the Cartesian mesh in an arbitrary fashion using the level set 

method, finite volume discretization would require reshaping of cells cut by 

implicit surfaces.  Here this is avoided by employing a finite-difference 

discretization of the strong form of the governing equations.  

When adopting a finite-difference approach, the accuracy and 

conservation properties of the flow solver generally become a concern.  

However, for problems constructed on a Cartesian mesh, the deviation of the 

finite-difference approach from the finite-volume approach appears only at 

grid points adjoining an immersed boundary.  At these embedded interfaces, 

mesh refinement is employed in order to minimize losses in mass that can 

result from maintaining grid cell constancy and employing finite differencing. 

A second-order accurate Cartesian grid based finite-difference scheme is 

used to discretize the incompressible Navier-Stokes equations. The 

discretization essentially depends on tempering the differential operators with 
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the level set distance function field.  As a result, the present algorithm handles 

embedded solid-fluid interfaces (using the sharp-interface method detailed in 

this chapter) and fluid-fluid interfaces (using the Ghost Fluid method) [26] in 

a unified fashion. 

1.4.1 Transport Equations 

The governing equations for incompressible flow are: 

       (1.25) 

and  

 
  

  
          

 

  
   . (1.26) 

In Equation 1.26,            is the Reynolds number, where          and   are the 

bulk fluid density, characteristic velocity, characteristic length and dynamic viscosity 

respectively.  Scalar (temperature, species concentration) transport equations take the 

general form 

   
  

  
         

  , (1.27) 

where    and    are material constants associated with the time-dependent and diffusive 

terms respectively. 

1.4.2 The Flow Solver 

 

A cell-centered collocated arrangement of the flow variables is used to discretize 

the governing equations.  A two-step fractional step method [27-28] is used to advance 
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the solution in time. The first step evaluates an intermediate velocity by solving an 

unsteady advection-diffusion equation, 

 
     

  
       

 

  
   , (1.28) 

where the intermediate velocity    is evaluated with central difference discretization 

schemes for convection and diffusion terms. The convective terms are treated explicitly 

and discretized using a second-order accurate Adams-Bashforth method: 

      
 

 
(                  ). (1.29) 

The diffusion terms are treated semi-implicitly using a Crank-Nicholson scheme: 

 
 

  
    

 

   
(         ). (1.30) 

The second fractional step involves the correction of the intermediate velocity field    to 

enforce mass conservation, 

 
       

  
    , (1.31) 

where a pseudo-pressure field   is evaluated to impose a divergence-free velocity field at 

time step    .  This is done by taking the divergence of Equation (1.31) to obtain a 

Poisson equation: 

     
   

  
. (1.32) 

The final semi-discrete form of the equations including each of the above discretization 

schemes is then 

  
  

  
 

 

   
     

  

  
 

  

   
 

 

   
     

    
 

 
(                  )    (1.33) 

and 
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, (1.34) 

where       √     is the Froude number, used if buoyancy effects are considered.  

The intermediate velocity is then corrected to obtain the final divergence-free velocity 

field: 

             . (1.35) 

The advection-diffusion equations for scalar (heat and species) transport are discretized 

in a similar manner, i.e. 

    
    

  
 

  

 
         

  

  
 

  

 
     

     
 

 
(                  ).  (1.36) 

1.4.3 Implicit Interface Representation using Level Sets 

Embedded surfaces are represented implicitly on the Cartesian mesh using a 

standard level set approach [24, 29-31].  The level set method defines a scalar field   , 

where subscript   denotes the     interface embedded within the computational domain. 

The value of    at any point is the signed normal distance from the     interface, with 

     inside the immersed boundaries and       outside.  The interface location is 

thus implicitly embedded in the    field, since the      contour represents the     

immersed boundary surface.  

In the case of moving interfaces, boundary motion is tracked by advecting the 

level set using 

 (  )          . (1.37) 
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In Equation 1.37,    is the     level set velocity field which is derived directly 

from the physics of the problem. A fourth-order ENO scheme in space and fourth-order 

Runge-Kutta integration in time are used for the evolution of the level set field. Since     

is prescribed only by the physics on the interface (i.e. on the zero-level set), the velocity 

value at grid points that lie in the narrow band around the zero-level set needs to be 

obtained. This is done by extension of the interfacial velocity [30] away from the front 

using 

             , (1.38) 

where   is the quantity (i.e. the interface velocity component      or     ) that needs to be 

extended away from the interface.  A natural choice for the extension velocity is      

    (  )
   

|   |
, which extends the velocity in a normal direction outward from an 

interface; this populates the narrow band around each interface in the time    (  ) 

with the necessary level set velocity information to impose dynamic boundary conditions 

on surrounding fluid regions.  A reinitialization procedure [32-33] is carried out after 

level set advection to return the  -field to a signed distance function, i.e. to satisfy 

|   |   .  Defining (  )  as the level set field prior to re-initialization, the following 

equation is solved to steady state, in order to re-initialize the level set field for the next 

advection step: 

 (  )            (  ) (1.39) 

        ((  ) )
 (  ) 

| (  ) |
. (1.40) 
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In Equation 1.40,     ((  ) )  
(  ) 

√(  ) 
  (  ) 

, with the initial condition   (   )  

(  ) ( ).  Calculating the normal   and curvature   of an interface using the level set 

field information is simple within this framework: 

   
   

|   |
 (1.41) 

and 

       . (1.42) 

1.4.4 Moving Boundaries 

In the Eulerian sharp interface framework, a solid boundary moving across a grid 

point will cause the phase of the point to change from liquid to solid, or vice versa.  

Different approaches have been employed to handle that particular situation, including 

Ghost-Fluid and immersed boundary methods [26, 34-35] and fictitious domain methods 

[36], in which flow fields are computed within, as well as outside, the immersed solid 

object.  In this way, when the boundary crosses over a grid point and changes the state 

from solid to fluid, the newly emerged fluid point simply takes on the flow field variables 

that were available at that point in the previous time step.   

In the sharp interface method [37-38], as well as immersed interface methods [39-

40], where the flow is computed separately in each sub-domain (fluid and solid) 

separated by an interface (and no ghost flow field exists in the solid), a scheme must be 

devised to obtain the flow field variables at newly emerged fluid points.  Note that the 

converse case in which a grid point that was in the fluid phase transitions into the solid 

phase presents no issues, since the flow field is not computed in the solid phase.  A newly 
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emerged fluid grid point is defined by the condition (  )   
   (  )   

   .  Since the point 

was previously in the solid phase ((  )   
   ), it has no history in the fluid phase 

((  )   
     ), and so    (and also   ) does not exist for such a point.  Therefore, these 

points must be evolved to the next time level     in a special fashion.  Note that since 

the pressure Poisson equation does not have a time-dependent term, the pressure in such a 

cell can be evaluated as usual once a    value is available after solving the momentum 

equation.  The method to obtain    (and   ) for such points follows along the lines 

detailed in  [37-38], and is analogous to the approach taken in moving grid formulations 

when a fresh grid point is inserted following mesh refinement.  The value at such points 

is obtained by interpolation from known values in the surrounding grid cells and on the 

moving boundary (where boundary conditions are specified).   

For a particular time step in which a grid point changes phase from solid to fluid, 

the value taken by    at that point is found using a linear interpolation operator spanning 

neighboring points in the fluid and on the interface.  The interpolation points that are 

picked depend on the orientation of the interface in the cell as illustrated in Figure 1-10.  

For the particular case in Figure 1-10, the value at the freshly cleared cell (   ) is 

calculated as     
  .         

      

 /  (     ), where     is the distance between 

the grid point (   ) and the interfacial point    .  Interpolation points are chosen 

depending on the direction of the normal vector at     .  (     )/ and the ratio 

     .  For instance, in the above expression for the case in Figure 1-10, points     and 

(     ) are chosen since      and      .  Consistent with the differencing scheme 

at interface-adjacent grid points, the treatment at the newly emerged fluid points is first-
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order accurate.  Note that this procedure is equivalent, in analogy with purely Lagrangian 

(moving grid) methods, to interpolating the values of variables to a newly inserted point 

after mesh refinement occurs from values at the old mesh points at the previous step (i.e. 

before refinement).  In diffuse interface Eulerian methods (where interfaces may be 

captured using Volume of Fluid, level set, phase field, etc), the interfacial forces are 

spread over the mesh [41-42] and this issue of cross-over does not arise, since there is no 

clear-cut interface location and all properties are taken to vary smoothly over a few mesh 

points. 

For a complete description of discretized equations used to solve for a fluid flow 

field domain embedded with dynamic sharp interfaces, the reader is referred to [29, 43-

44]. 

1.5 Toward Image-Based Modeling without Surface 

Meshing 

 

The dominant theme of this work involves simplifying the difficult task of 

modeling complex geometries and movements found in biological systems by dispensing 

with the need for a priori mathematical descriptions.  Such descriptions, based upon 

assumptions or direct measurements, can be useful for elucidating the isolated effects of 

various parameters under scrutiny, as will be shown in Chapter 2.  However, it is also 

sometimes desirable to understand the effects of a number of separate physical 

mechanisms that are unknown individually, but that concertedly produce a unique action 

that is interesting by virtue of its prevalence in nature.  Progress has been made to this 
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end through the course of image based modeling developments that will be described in 

the coming chapters.   

A preliminary Lagrangian image-based modeling method was designed and 

implemented as the first step in this move away from purely mathematical descriptions, 

and will be the primary focus of chapter 3.  It is shown to be effective in computationally 

capturing phenomena that would be difficult to reproduce without the benefit of imaging 

techniques, but, as it stands, still requires Lagrangian surface meshing for a complete 

description of the boundaries of interest interacting with fluids in the flow calculations. 

While dispensing with the need for functional approximations, this Lagrangian 

formulation of imaged objects comes with its own set of problems. Besides proving to be 

highly tedious to implement, the necessity of maintaining point correspondence between 

image frames in order to track boundary velocities and positions required surface meshes 

with equal numbers of evenly spaced points, which was found to lead to the introduction 

of unphysical boundary conditions. In addition, the need to smooth surface points once 

they were established often led to undesirable deformations in the modeled geometry. 

Proposed is a much simpler image-based approach, in which image files are used 

directly as geometric and dynamic templates for building computational surfaces, using 

level sets, in a purely Eulerian setting (Figure 1-11), without the need to employ any 

surface meshing whatsoever. Through image segmentation, a level set field can be 

generated on an image mesh and then later mapped directly onto a flow solver mesh by 

interpolation. 

Without the ability to generate a set of surface points that can be smoothed in 

space, one of the keys to the success of the proposed Eulerian method lies in generating 
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high-quality segmentation contours directly on the image domain. This is not always 

straightforward on real images, which tend to contain noise or imperfect boundary 

representations that can lead to unusable segments. Thus, the first step toward a truly 

Eulerian approach was to develop a denoising facility to pre-process images and ready 

them for segmentation. Chapter 4 gives a background of denoising techniques, and 

compares several of the state-of-the-art methods currently used in image processing. The 

methods were tested thoroughly on synthetic images corrupted with noise, as well as on 

several real images, giving insight into their relative strengths and weaknesses, and 

ultimately leading to a selection for use in further developing the proposed modeling 

framework. Chapter 4 also includes a detailed discussion of image segmentation, and the 

construction of level set-based moving interfaces from segments as a means for obviating 

the tedious task of Lagrangian point treatment. 

A motion tracking technique known in computer vision as optical flow is the 

subject of a literature review outlined in Chapter 5.  Optical flow is simply a means for 

constructing an Eulerian vector field which possesses the same density as the set of 

images it is derived from, based on the assumption that brightness is a conserved quantity 

that is invariant to positioning within an image frame. Each pixel in an image is assigned 

a velocity vector, and the resultant velocity field quantifies the motion taking place in a 

set of images from one frame to the next. Because of the assumption of brightness 

constancy, as well as other assumptions that will be discussed in Chapter 5, such as 

brightness gradient constancy and image smoothness, optical flow solutions are fairly 

sensitive to noise present in the ordered image pairs on which they are obtained, 

reinforcing the necessity of the work described in Chapter 4. 
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Both linear and nonlinear optical flow methods were thoroughly tested on a 

variety of synthetic and real images, the results and discussion of which form the topic of 

Chapter 6. Nonlinear optical flow was found to perform well in most situations, lending 

the ability to describe boundary conditions in terms of a level set field, and thus 

completing the physical description necessary to construct computational models in a 

purely Eulerian setting. Applications of optical flow to particle flows and particle image 

velocimetry (PIV) analysis are also discussed. 

Image sequence frame rates are much too slow to match the small time steps 

required for high-resolution CFD simulations, and so intermediate representations of 

object locations are required to fill in the missing information between image frames. It 

was initially hoped that optical flow would act as the primary mechanism by which this 

missing level set information could be obtained, but advecting surfaces using optical flow 

field information alone turned out to be insufficient. Thus, Chapter 7 opens with an 

introduction to another computer vision technique, image morphing, designed to fulfill 

precisely the purpose sought in completing the Eulerian modeling framework we set out 

to build – supplying the missing information between image frames so that the relatively 

low temporal resolution of image sequences no longer precludes modeling behavior on 

much finer time scales. 

The discussion of morphing methods and their application to this work is 

followed by a final simulation that brings together all of the ideas outlined in this thesis, 

modeling a denoised and segmented video sequence of a swimming American eel as an 

embedded level set interface on a CFD mesh, complete with boundary conditions 
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supplied via optical flow and motion supplied via morphing, demonstrating a complete 

unification of image processing and CFD analysis. 
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Figure 1-1. The conventional CFD routes to modeling complex geometries. 
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Figure 1-2. The Daubechies-4 scaling function, approximated by six convolutions of the 
four scaling coefficients with a unit box. 
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Figure 1-3. The Daubechies-4 scaling function. 
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Figure 1-4. The Daubechies-4 wavelet function, approximated by six convolutions of the 
four wavelet coefficients with a unit box. 
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Figure 1-5. The Daubechies-4 wavelet function. 
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Figure 1-6. Wavelet decomposition takes place recursively, with scaling coefficients at 
each level being decomposed into a new set of scaling and wavelet 
coefficients until the signal is evaluated on the coarsest scale possible. 
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Figure 1-7. The signal is downsampled to half its original size with each level of wavelet 
decomposition. 
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Figure 1-8. Decomposing a 1-D signal with the discrete wavelet transform using Daub4 
wavelets: (A) Illustrative top-hat signal; (B) 1

st
 level DWT; (C) 2

nd
 level; (D) 

3
rd

 level; (E) signal after applying the DWT on 5 levels. 
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Figure 1-9. Decomposing a 2-D signal with the discrete wavelet transform using Daub4 
wavelets: (A) Illustrative top-hat signal; (B) 1

st
 level DWT; (C) 2

nd
 level; (D) 

3
rd

 level; (E) 4
th

 level; (F) signal after applying the DWT on 5 levels. 
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Figure 1-10.  The emergence of a point from the solid phase to the fluid phase as the 
sharp solid/fluid interface traverses the mesh. 
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Figure 1-11. The aim of the present work is to develop a method that bypasses the tedious 
steps of mesh generation. 
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CHAPTER 2 

IDEALIZED GEOMETRIC MODELING: MIXING AND TRANSPORT 

IN THE PROXIMAL GI TRACT AT THE ANTRO-DUODENAL 

JUNCTION 

2.1 Introduction 

 

While this thesis seeks to develop a modeling technique that unifies computer 

vision and CFD using level set methods, initial research work in the present course of 

study was performed using idealized geometries and motions that were mathematically 

prescribed based upon a priori assumptions. This is the standard modeling route generally 

taken, as it allows for a neat, tractable representation of complex physical phenomena. 

The task was to computationally model fluid flow through the pylorus (a regulator of 

sorts situated between the stomach and the small intestine), and was motivated by 

gastrointestinal research performed by Dr. Konrad Schulze of the Department of Internal 

Medicine, University of Iowa Health Care.  Knowledge of the pylorus’ action was 

primarily qualitative in nature, and so its functional representation was necessarily 

simple.  Thus, a contrast is established between the level of detail offered by this type of 

idealization, and that of the image-based approaches being targeted for implementation 

during the remainder of this thesis project—a contrast which will become apparent in the 

following chapters. 

The anatomical features and interesting properties of the pylorus that make it 

worth understanding from both clinical and physical perspectives are discussed in the 

forthcoming section. 
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2.2 Description of the Anatomy and Physiology 

 

The gastric outlet to the small intestine, or antro-duodenal junction, is thought to 

have an impact on the effectiveness of mixing and subsequent absorption of nutrients in 

the gastrointestinal tract [5, 45-46].  Following ingestion, the stomach secretes gastric 

juice containing protein- denaturing hydrochloric acid and pepsinogen, and effectively 

grinds the mixture with a series of strong muscular contractions, producing a suspension 

of smaller solid particles and gastric juice known as chyme.  Peristaltic contractions in 

the sinus of the stomach serve to transport chyme distally into the small intestine, where 

further enzymatic catalysis, transport, and digestion continue [5, 45-47].  The objective of 

this study is to determine what role, if any, the morphology of the antral-duodenal 

junction (Figure 2-1) plays in effecting transport and dynamic mixing of nutrients in the 

proximal duodenum.  For this purpose, the flow of gastric effluent is computed in silico, 

modeling a set of experiments that were conducted on the cat gut in vitro [48]. 

The pylorus is comprised of a collection of tissue structures that connect the 

antrum to the duodenum. Its luminal diameter is controlled by a sphincter muscle 

complex that sets the resistance to bulk gastric effluent by regulating the tone of the 

pyloric orifice.  During gastric digestion the proximal and distal pyloric muscle loops 

occlude the pyloric lumen, preventing premature discharge of unprocessed material to the 

duodenum.  Once the stomach has completed its task of breaking down large solid 

agglomerates into smaller particles, the pylorus relaxes and peristaltic contractions in the 

antrum begin to force chyme distally.  Antral contraction waves approach the pyloric 

orifice and, along with the sphincter complex and mucosal folds, cause steady 

constriction of the pyloric lumen.  Chyme continues to be forcibly transported through 
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this lumen until it is fully occluded, a process thought to potentiate an effluent jet into the 

superior duodenum [5, 45-46].  The geometry and contractile activity of the pylorus are 

thought to potentially affect gastric outflow and mixing effectiveness in the first part of 

the duodenum, as mixing of chyme with duodenal contents (in particular pancreatico-

biliary secretions) is essential for digestion and absorption to proceed [5].  Thus, the 

ultimate aim of this study is to examine, through idealized geometric modeling and 

simulation, the effects of morphologic structure and pulsatility on the mechanics of flow 

and mixing in the antral-duodenal junction. 

2.3 Computational Modeling of Transport and Mixing in 

the Antro-Duodenal Region 

 

In vivo and in vitro laboratory experiments provide a great deal of information 

regarding the function of various components of the GI tract. However, better 

understanding the system’s mechanics requires development of quantitative models that 

allow precise and isolated effects of these components to be more thoroughly 

investigated. Such models include the essential physical mechanisms pertinent to the 

physiology of the overall system.  Clearly, inclusion of all the known mechanisms acting 

in the GI tract leads to a highly complex dynamical system. While a 3-dimensional 

transient model of the entire system would best reproduce actual physical behavior, and 

remains a long-term goal of this thesis work, it is kept in mind that there is still much 

physical insight to be revealed in idealized models that allow for examination of specific 

features over a range of flow and geometric parameters. This is the approach evaluated 

presently, with emphasis placed on morphology and dynamic properties of the pylorus. 
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In these preliminary calculations, basic aspects of fluid mechanics across the 

gastric outlet in simplified models of its geometry are examined.  Several cases were 

constructed and analyzed in order to assess the importance of individual aspects of 

anatomical structure and kinematics.  Flow calculations were performed in a series of 

channel-like domains (Figure 2-2) representing the distal antrum and superior duodenum, 

separated by various configurations of the pylorus.  Of specific interest are the following 

aspects: 

1. How does the pulsatile nature of gastric outflow affect the dynamics of 

nutrient transport and mixing? 

2. What are the geometric features of the antral-duodenal junction that 

enhance or suppress transport/mixing in that region? 

3. To what extent does wall motion in concert with pulsatile gastric 

outflow (aspect 1) through different geometric configurations (aspect 2) lead to 

enhanced transport and mixing? 

To examine the aspects 1-3 listed above, flow fields were computed in several 

configurations:  A) steady flow through a relaxed (symmetric) pylorus; B) pulsatile flow 

through a relaxed pylorus; C) pulsatile flow through a closing pylorus; D) pulsatile flow 

through a static pylorus, with asymmetry produced by tonicity of the proximal and distal 

pyloric muscle loops along with the pyloric torus; and E) pulsatile flow through a 

similarly asymmetrical, but closing, pylorus.   F) In addition, some of these cases were 

varied over a range of gastric outflow rates (or effluent viscosities, alternately) to 

determine the effect of the pylorus on homogenization of chyme with different 

consistencies (or, more precisely, different viscosities). 
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Computational methods for solving equations of flow around moving boundaries 

in the manner chosen here were briefly outlined in Chapter 1, and have been thoroughly 

validated in several papers [29, 43-44, 49].  Following fluid mechanical conventions, the 

governing equations were ―non-dimensionalized,‖ or normalized, by dividing 

dimensional quantities by their corresponding representative scales in order to reveal 

parametric relationships known to govern physical behavior.  In the cases presented here, 

length    is normalized by the characteristic unit length of the focal region (i.e. nominal 

diameter of the duodenum), velocity    by the maximum inflow velocity in the gastric 

pulse     , and time    by       .  This normalization leads to an important non-

dimensional quantity known as the Reynolds number,    
  

 
 , where  is the kinematic 

viscosity of the fluid.  Physically, when the Reynolds number is very small, viscous 

effects dominate over fluid inertia.  The Reynolds number for all cases studied in this 

investigation was varied from        (low) to          (moderate) — the upper-

bound value obtained from data on duodenal dimensions and flow rates of normal saline 

introduced into the cat gut in vitro [48].  In moderate Reynolds number flows (         

to          ), the presence of relatively strong laminar vortical fluid patterns is 

expected.  Such vortices can lead to rapid fluid mixing, particularly if they possess 

temporal and spatial variations, as will be shown [50-52]. 

The flow field equations solved in these models include the standard Navier-

Stokes (continuity and momentum) equations (Equations 2.1 and 2.2), where    is a 

nondimensional fluid velocity vector with       (x- and y- velocity) components in 2D: 

      , (2.1) 

 
  

  
          

 

  
   . (2.2) 
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Based on available data and non-dimensionalization techniques described above, 

the channel height in the antral and duodenal regions was set to 1.0, with the overall 

channel length from inlet to exit given 6.0 units length.  The 2D computational domain 

for all cases was discretized into square grid elements measuring 0.05, 0.025, or 0.0125 

units per side depending on the level of mesh refinement demanded by localized fluid 

motion to obtain a suitable solution [53]. 

For each model involving temporal variation of fluid velocity as seen in digestive 

systems, a pulsatile inlet velocity condition was imposed to represent rudimentary flow 

characteristics generated by periodic antral contractions (Figure 2-3).  The 

nondimensional inlet velocity       
  was varied in a sinusoidal manner between 0.0 and 

          
     , and the frequency of oscillation was set to       per time unit so that 

one pulse would have a total duration of 2.5 time units (corresponding to in vitro 

experimental data on cats [48]).  To complete the cycle, each pulse was separated by a 

quiescent period (      
     ) of 1.0 time unit, giving a total cycle duration of       .  

The quiescent phase was principally designed to represent the refractory period in which 

pyloric relaxation and return to an open position occurs, but it was retained for all cases, 

with or without dynamic wall events, to make results more directly comparable. 

In addition to the standard flow variables (velocities and pressure), a conserved 

species transport equation was solved as a measure of spatial gastric effluent 

homogenization with duodenal contents.  Mixing effectiveness was quantified in each 

case by calculating the scalar variance [54] of an evolving marker species (marked fluid 

region) that was initialized as a block measuring 1.0 unit in length and 0.5 unit height, 

with an initial concentration of 1.0.  The species was given a small diffusivity of    
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     in order to ensure advection-dominant transport, and placed vertically centered 

about the domain’s longitudinal axis with the front (right) side of the block given the 

same horizontal coordinates as the distal terminus of the antrum.  These scalar species 

blocks were evolved in each of the flow fields by solving the transport equation [55]: 

 
 

  
∫      ∮  (   )    

 

  
∮       

 
. (2.3) 

In Equation 2.3,   represents scalar species concentration,    (   )   is the 

Peclet number (the ratio of convective to diffusive transport in the fluid continuum), with 

   representing the characteristic bulk fluid velocity (ranging from 0.0 to           
 ).  

Clearly, a small diffusivity coefficient results in very little diffusive transport, implying 

that the scalar species simply advects along fluid streamlines.  The scalar species variance 

calculated for each case is defined by 

    ( )  〈  〉  ∫ (   ̅)
 
   

 
 (2.4) 

In Equation 4, V is the volume of the computational domain and  ̅ is the volume 

averaged concentration of the initial species block, i.e. 

  ̅  
∫      

∫     

 (2.5) 

The concept of scalar variance is clarified by considering a rectangular domain of 

species concentration zero, within which is placed a scalar species block of concentration 

1.0 (Figure 2-5).  The mean concentration  ̅ of the field in this state is simply 

  ̅  
    (         )     (         )

(         ) (         )
 

 

 
, (2.6) 

which gives a variance of  

  〈  〉  (        )  (         )  

 (        )  (         )  
 

  
.    (2.7) 



www.manaraa.com

45 
 

In a field that that has become twice as ―well mixed‖ (Figure 2-5), variance decreases 

accordingly with the increased level of species homogenization: 

  〈  〉  (        )  (        )  

 (        )  (        )  
 

  
.    (2.8) 

Scalar variance approaches zero as perfect mixing is more nearly achieved. 

2.4 Computational Results 

2.4.1 Steady Flow across the Gastric Outlet through a 

Relaxed Pylorus 

 

Volumetrically, a large portion of gastric emptying of aqueous material is 

believed to occur across an initially relaxed pylorus [5, 45-47].  In its relaxed state, the 

torus and distal muscle loop of the human pylorus form a lumen of about 1 cm diameter 

between the antrum and duodenum, whose diameters are several times larger [5]. To 

isolate the effect of such a localized channel narrowing on flow, steady flow behavior (at 

      ) was computed through the channel illustrated in Figure 2-2.  This calculation 

was designed to establish a baseline for comparison with forthcoming cases exhibiting 

inflow pulsatility.  Note that in all of the results presented here the flow is from left to 

right, i.e. the antrum (inlet) lies to the left of the pylorus and the duodenum to the right.  

A constant velocity of       
      was imposed at the channel inlet, with the resultant 

flow given 10.0 time units to propagate through the domain in order to achieve steady-

state conditions.  After this initial period, the scalar species marker was introduced as 

described previously and allowed to pass through the channel domain to the exit. 
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The dominant flow field feature in this first case consists of a pair of recirculation 

zones distal to the pylorus (Figure 2-7; only one is shown with streamlines due to 

symmetry.)  While the marker fluid is distorted, it remains essentially unmixed as it 

passes into the superior duodenum.  This is primarily due to the lack of dynamic vortical 

activity in the flow.  Vorticity is limited to the separation region distal to the pylorus, 

segregated from the rest of the flow by  a separatrix [50, 56-57], which in this case is the 

streamline separating flow in the zone of separation from that which passes clear through 

the channel.  The separatrix thus blocks passage of bulk advecting fluid (along with the 

scalar species) into the recirculation zone, and vice versa; the ability to effectively mix 

different regions of fluid is severely limited unless some mechanism for disrupting the 

manifold (i.e. the separatrix) between the recirculating zone and the core flow is put into 

action. This is provided by pulsatility (intermittent gastric outflow) as shown in the next 

section. 

2.4.2 Pulsatile Flow across the Gastric Outlet through a 

Relaxed Pylorus 

 

Pulsatile inflow conditions were imposed next (Figure 2-3) on a channel that was 

identical to the one evaluated in the steady flow case.  Examining Figure 2-7, pulsatility 

in the flow has apparently increased mixing a great deal over the steady flow solution, 

and in a relatively small spatial region.  Streamlines illustrate a pattern of dynamic vortex 

behavior that was absent in the previous case.  In the pulsatile flow, jet development 

through the pylorus is coincident with vortex growth and strengthening in the distal 

recirculation zones; the marked fluid is entrained by vortices as they gain momentum and 
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push the separatrix further into the jet region.  As the inlet flow decelerates, mean flow 

through the channel decelerates as well.  This leads to ―shedding‖ of the vortices, i.e. the 

vortices detach from the wall distal to the pylorus and are carried away downstream, and 

a new pair of vortices forms at the next flow pulse, leading to a periodic vortical flow 

field in the superior duodenum. Vortex formation and shedding from the divergent distal 

aspect of the pylorus provides a key mechanism for drawing the scalar species into the 

sheet shown in the figure; the separatrix between regions of large-scale advection and 

recirculation has been disrupted during the deceleration phase of the cycle, allowing the 

marked species to become entrained in the vortical flow. 

2.4.3 Pulsatile Flow across the Gastric Outlet through a 

Closing Pylorus 

 

Transport of gastric effluent induced by periodic antral contractions occurs in 

concert with the closure of pyloric orifice such that fluid is forced through a narrowing 

lumen.  To isolate the contributions made by this narrowing to the mixing process, a 

model was constructed identically to that described in the previous section, but with the 

inclusion of pyloric closure.  In this model, temporal motion of the solid boundary 

defining the pyloric geometry was varied quasi-sinusoidally such that the pylorus was in 

its fully open position at the beginning of a pulse cycle, and closed by the time the inlet 

velocity returned to zero at the end of the active part of the cycle.  Temporally sinusoidal 

reopening of the pylorus was set to take place during the 1.0 time unit refractory period 

marking the end of the cycle. 
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Enhanced mixing clearly is achieved by closure of the pyloric lumen in concert 

with flow pulsatility (Figure 2-8).  The jet flow effected by the narrowing lumen gives 

locally advecting fluid a great deal of axial momentum, while the recirculation zones 

grow concurrently with the increasing obstruction.  This effectively leads to large regions 

of vorticity, which act to stretch marked fluid along the domain’s axis in addition to 

rolling it into sheets within each vortex.  Prominent secondary vortices are also observed 

in this case, possessing a rotational sense opposite to the primary vortices. This leads to 

further stretching and folding of the scalar field.  

2.4.4 Pulsatile Flow across the Gastric Outlet through a 

Static Asymmetric Pylorus 

 

In the previous three sections, three ingredients were examined that concertedly 

lead to increases in the degree of fluid mixing seen in a channel flow; namely, some sort 

of partial obstruction leading to convergence and subsequent divergence of the flow, 

pulsatility, and wall motion. So far, however, only highly simplified, symmetric 

geometries have been covered to make this point.  In reality, with increased tonicity, the 

positioning of the proximal and distal pyloric muscle loops lead to a "notched" pyloric 

configuration when viewed in two-dimensional longitudinal sections (Figure 2-9 and 

Figure 2-10).  The next case is designed to capture the effect of this geometric feature of 

the pylorus on flow into the proximal duodenum.  Figure 2-11 illustrates the static 

asymmetric pylorus increasing mixedness of the scalar field over its symmetric 

counterpart.  As fluid is accelerated through the pylorus in this configuration, the 

resultant efflux is directed away from the centerline due to geometric asymmetry.  As the 



www.manaraa.com

49 
 

jet evolves downstream and diverges further from the axial midline, it collides with the 

upper wall of the channel and is subsequently deflected away toward the lower wall.  

This results in a meandering pathway of bulk advection, demarcated by vortices which 

are now staggered in the channel and free to occupy the whole of the channel width rather 

than being mirrored symmetrically. The resulting path of the fluid jet (and hence of the 

advected scalar) is highly tortuous, leading to larger residence times and stretching of 

fluid elements, and therefore to enhanced mixing.  

2.4.5 Pulsatile Flow across the Gastric Outlet through a 

Closing Asymmetric Pylorus 

 

Asymmetry is seen to be a significant contributor to mixing effectiveness.  Next, 

all of the mechanisms (pulsatility, asymmetry, pyloric closure) examined heretofore are 

involved by examining the effect of closure of an asymmetric pylorus.    

Immediately evident is the fact that the mechanisms of pulsatility, asymmetry and 

pyloric closure concertedly lead to significant enhancement of mixing.  After a single 

gastric pulse, the scalar marker species has become much more nearly homogenized than 

in any of the previous cases (Figure 2-12).  It is noteworthy that this homogenization not 

only occurs rapidly, but takes place within a small spatial region as well; scaling with the 

human GI system while maintaining the same Reynolds number, the level of mixing seen 

in this case would occur within a 4 or 5 cm segment of the proximal duodenum [5] — 

even neglecting the presence of prominent geometric features such as the duodenal cap 

and mucosal folds in the channel. 
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2.4.6 Mixing Effectiveness attributed to Geometric and 

Dynamic Properties 

 

Commonly employed scalar variance measures were obtained during each flow 

calculation as a method of quantifying scalar mixing.  For each of the cases computed, 

normalized scalar variance (Equation 4) was plotted for one complete pulse cycle to 

directly compare each flow’s mixing effectiveness.  In Figure 2-13, the scalar variance 

measure of each of the 5 cases is plotted. Dynamic behavior of the pylorus, combined 

with pulsatility, clearly leads to effective mixing.  Imperfections in the form of channel 

asymmetry enhance this phenomenon even more; the physical structure of the pylorus 

appears to have a significant effect on mixing patterns, at least in the Reynolds number 

(i.e. the fluid viscosity) regime corresponding to saline in the cat gut examined in vitro 

[48]. 

2.4.7 Mixing Effectiveness attributed to Reynolds Number 

 

The effective viscosity of chyme can vary considerably depending on its solid 

fraction [5, 45-46, 48], with more viscous solutions yielding lower Reynolds numbers. 

Thus, the Reynolds number was varied over several orders of magnitude to study the 

effects of viscosity on mixing.  For brevity, results are limited to Re variations in the fifth 

and final case involving a closing, asymmetric pylorus.  As seen from the scalar variance 

plot in Figure 2-15 the flows with Reynolds numbers of order 1 and order 10 lack the 

momentum necessary to overcome viscous stresses in the fluid and generate vorticity, 

leaving the initial scalar species blocks largely intact as they progress through the 
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channel.  Advection begins to dominate as chyme viscosity decreases, resulting in a large 

degree of fluid stretching, vortex formation and hence, mixing.  Scalar variance plots help 

to quantify this shift in behavior, and leave us to conclude that pyloric structure may not 

play a large role in the homogenization of dense slurries without adequate dilution. 

2.5 Conclusions 

 

The lumen of the gastroduodenal junction has a complex geometry which changes 

with the contractile activity of gastroduodenal musculature in response to the pH, 

osmolarity, caloric density and mechanical properties of the luminal contents [5, 45-46]. 

The focus here was on the contribution likely to be made by several specific anatomical 

parameters (like the manifold structure of the pyloric lumen produced by its muscle 

loops), and by some specific functional parameters (steady versus intermittent gastric 

outflow).  A comparison of results between aqueous and more viscous luminal contents 

was made, as well.  The results indicate that intermittent gastric outflow in combination 

with the complex geometry and motion of the pyloric lumen is likely to enhance 

duodenal mixing of aqueous fluids, facilitating rapid chemical digestion and subsequent 

absorption of nutrients in the duodenum. More viscous fluids or slurries may remain 

unmixed for a longer period of time, and will necessarily involve contractions of the 

duodenum to provide any significant homogenization. 

For this study, no image data or other means for accurately reproducing pyloric 

morphology were available; the bases for modeling the pylorus were simply a qualitative 

description of its approximate geometry and motion, and knowledge of the relationship 

between pyloric luminal diameter and the rate of chyme being discharged from the 
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stomach [48].  Thus, the complexity of the models was necessarily limited.  Austere 

geometric representations such as these can lend general physical insight, as has been 

shown, but capturing intricate motions and shapes of the type found in biological 

organisms with specificity requires a more detailed description; improving representative 

fidelity will be a dominant focus for the remainder of this work. 
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Figure 2-1. The region of interest (highlighted in grey) includes the gastric outlet, or 
antrum, pylorus, and superior duodenum. 
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Figure 2-2. Two representative channel domains used in flow calculations: (A) relaxed 
pylorus; (B) "notched" configuration resulting from tonicity of the pyloric 
torus and both muscle loops. 

  

 

A 
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Figure 2-3. Temporal variation of inlet velocity. 
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Figure 2-4. The scalar species block was initialized identically for each case evaluated. 
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Figure 2-5. Illustrative example of scalar variance calculation: (a) initial and (b) final 
states shown, each with a mean concentration of 0.25. 
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Figure 2-6. Passage of a passive scalar marker through a relaxed pylorus under steady 
flow conditions, with inlet velocity set to       

      and Re = 333.  In this 
image, 2.0 time units have passed, with the marked fluid exhibiting vertical 
compression toward and horizontal stretching along the symmetry axis in the 
weak jet created by the pyloric constriction.  Aside from an increase in surface 
area due to longitudinal stretching, no mixing is seen in this case. 

  

direction of  flow 
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Figure 2-7. Scalar species distribution following the active phase of one inlet pulse (t = 
2.5 time units, Re = 333), illustrating vortical stretching and resultant increase 
in interfacial area between regions of concentration 1.0 and concentration 0.0. 
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Figure 2-8. Scalar species passage through a narrowing pylorus (Re = 333):  t = 2.5 time 
units; the pyloric lumen is occluded and inlet velocity has returned to 0.0.  The 
thin, high velocity jet effected by the narrow lumen has led to rapid growth of 
a strong vortex pair, which sheds and propagates downstream as the bulk flow 
is halted. 
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Figure 2-9. Schematic of the relaxed pylorus. 
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Figure 2-10. 2-D asymmetry is produced by tonicity of both pyloric muscle loops in the 
contracted state. 
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Figure 2-11. Vorticity (A) and scalar field (B) after 2.5 time units at Re = 333.  Inlet 
velocity has returned to 0.0 and vortices have shed from divergent surfaces 
distal to the lumen. 
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Figure 2-12. A temporal progression of scalar species (left) and vorticity (right) during 
one complete inlet pulse cycle (3.5 time units) through the closing asymmetric 
pylorus:  (A) t = 1.25 time units, with the vortical jet becoming apparent as 
inlet velocity is maximized and luminal narrowing occurs; (B) t = 2.5 time 
units.  The lumen is fully closed, and the inlet velocity has returned to 0.0; (C) 
t = 3.5 time units.  The pylorus has returned to its original open state during 
the 1.0 time unit refractory period.  Strong, stable regions of vorticity remain, 
entraining weaker unstable vortices and further stretching the species. 
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Figure 2-13. Scalar variance plots of each case through one complete pulse cycle; Re = 
333. 
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Figure 2-14. Scalar species plots following one pulse cycle through the closing, 
asymmetric pylorus at four different Reynolds numbers: (A) Re = 1; (B) Re = 
10; (C) Re = 100; (D) Re = 333. 
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Figure 2-15. Scalar variance of the asymmetric pylorus model at four different Reynolds 
numbers. 
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CHAPTER 3 

IMAGE BASED MODELING IN TWO DIMENSIONS: PHYSICAL 

ANALYSIS OF LOCOMOTION AND TRANSPORT WITHOUT 

IDEALIZED GEOMETRIES 

3.1 Introduction 

 

In chapter 2, a set of idealized geometric models of the pylorus was introduced, 

and it was shown that such representations can be instructive for the purpose of 

elucidating physical trends in different types of computed flow fields.  However, for 

more complex shapes interacting with fluids, particularly those exhibiting motion that is 

difficult to describe functionally, idealized geometries evolving in prescribed fashions 

may fail to reveal some of the essential physical mechanisms that make studying the 

system interesting to begin with.  Alternately, generating surfaces and effecting their 

temporal evolution with fidelity may introduce a level of tedium that produces a strong 

desire for a simpler way of doing things.  In this chapter, a first attempt at an image-based 

approach designed to obviate some of these difficulties inherent to modeling complex 

phenomena such as animal locomotion and fluid transport through organ systems is 

developed, in which image files are used directly as the geometric descriptions upon 

which to build computational surfaces for CFD simulations. 

Two different systems were chosen for developing the methodology herein, for 

reasons of biological interest as well as amenability to image segmentation.  The first is 

an example of animal locomotion through an aqueous environment, modeled using a 

video file of an American eel (Anguilla rostrata) swimming in an experimental water 

tunnel apparatus.  The video was provided by Dr. Eric Tytell, and was originally created 
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to supplement experimental PIV results published by Tytell and Lauder [58] (Figure 3-1).  

The second system involves internal fluid transport through a guinea pig (Cavia 

porcellus) duodenum in vitro, the motion of which was captured on video during an 

experiment set up by Dr. Konrad Schulze at the University of Iowa Health Care center’s 

department of internal medicine (Figure 3-1).  Each video was segmented frame-by-

frame, and the resulting segmented surfaces were converted to sets of Lagrangian points, 

mapped onto a Cartesian mesh as zero level set contours, and imposed as boundaries 

embedded in their respective Eulerian flow fields. 

3.2 Image Segmentation 

 

In the introductory chapter, it was mentioned that the more complex an image is 

according to our visual system, the more advanced a segmentation algorithm must be to 

adequately separate the scene into distinct objects.  Fortunately, the image files chosen 

for this development project are particularly amenable to simple segmentation techniques 

in that there are only two primary regions in each picture – the object of interest and its 

surroundings – and that the two regions are highly contrasted.  The eel is nearly black in 

color (low in intensity), while the background is much lighter (higher intensity); the 

duodenal images reverse the color scheme but maintain the disparate intensity values 

between object and background. This allowed for early development of image-based 

modeling ideas to proceed without too much emphasis yet needed in the way of image 

quality. As such, the rapid k-means level set segmentation approach outlined by Gibou 

and Fedkiw [18] was chosen for its simplicity in implementation as a means to produce 

an initial survey of the overall viability of generating models from images. 
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The k-means approach for segmenting an image entails initializing the image’s 

pixel ( ) intensity field domain   with an arbitrary closed curve C, so that   

* |       +  with C enclosing some arbitrary region    of pixels possessing an 

average intensity level of   .  The remaining pixels in the image lie in region   , outside 

the closed curve where the average pixel intensity is    (Figure 3-2).  Curve C may be 

regarded as an isosurface (zero level set) of level set field φ, which is iteratively evolved 

according to pixel values falling inside and outside of the curve: 

 
  

  
    (     )    (     )  (3.1) 

In Equation 3.1,    and    are weighting coefficients (which are normally tuned 

so that curve evolution is biased toward either the inner or outer region depending on the 

final segmentation aims, but are both set to unity here due to the high level of image 

contrast exhibited in both cases), and    is the value of a single pixel in the image.  Each 

pixel  , then, has its own associated level set velocity 
  

  
 (which will henceforth be 

denoted v). The idea is to minimize v throughout the image domain, at which point 

segmentation is achieved.  Gibou and Fedkiw note that image segmentation is not 

concerned with the nature of a curve’s evolution, but only with the final result [18], and 

therefore reason that large time steps may be taken in reaching a final solution to 

Equation 3.1.  They further argue that this may be equivalently accomplished by 

regarding a segmented image as a binary field, with a single (negative) value given to all 

pixels ―inside‖ the curve describing an object, and another (positive) value given to all 

pixels ―outside.‖  Thus, for segmentation calculations performed in this work, each pixel 

is given a segmentation field magnitude of unity, with a sign equal to that of v at the 

corresponding pixel location.   
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Starting with an arbitrary initial curve such as that illustrated in Figure 3-2, curve 

C is iteratively evolved until ∆v vanishes, typically taking 4 or 5 iterations (Figure 3-2).  

The result is a binary field of value    closely describing the shape of the object being 

segmented (Figure 3-3 and Figure 3-4), albeit in an unsmooth, pixel-wise manner.  This 

process is repeated for each image frame in the video file, with the exception of the 

arbitrary initialization step; after the first frame, each subsequent frame uses the already 

existing segmentation field from the frame before it as an initial state (or ―shape prior‖) 

in order to speed up calculations. 

The video files used in this investigation, and perhaps most meso-scale video files 

in existence, are spatially and temporally too coarse to be used ―as is‖ for CFD 

calculations; computational fluid simulations require higher fidelity than what is given by 

the pixel density and frame capture rate of the average video camera.  For this reason, 

segmented objects must be mapped onto flow meshes containing more grid points than 

there are image pixels, and intermediate geometric configurations must be reconstructed 

between image frames to avoid jumps in position that are incompatible with fluid 

response length and time scales. 

3.3 Preprocessing 

 

Matlab 2007A was used to convert the supplied AVI video files of the eel and the 

duodenal segment into raw data files, and was concurrently used to crop the duodenum 

video frames in order to isolate the region of interest during the process (Figure 3-5).  

The coarse nature of each of the image files serving as model bases required some 

preprocessing before segmentation could proceed.  In regions of large gradient between 
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each of the objects (the eel and the duodenum) and their surroundings, there existed a 

quantized ―checkerboard‖ pattern where different intensity values are meant to blend 

with each other and create the soft outline generated when a rounded object reflects light 

in a smooth, continuous fashion (Figure 3-6).  This becomes problematic for 

segmentation techniques that rely on relative intensity values of neighboring pixels as a 

means of detecting objects.  In extreme cases, a checkerboard pattern featuring 

alternating light and dark grey values that are close in intensity levels to the object of 

interest and its surroundings, respectively, may be segmented into a number of different 

regions that contain only a few pixels.   

To avoid generation of such tortuous segmented surfaces, each of the image 

frames used in this work was preprocessed with wavelet filtering techniques in order to 

smooth boundaries and provide a clean segment.  A 2-D discrete wavelet transform 

(DWT) algorithm written in Fortran 90 roughly following [59-60] was utilized to map 

each image frame into wavelet space, where relative pixel intensity values could be 

compared within neighborhoods of varying size.  Described in some detail in Chapter 1, 

the DWT decomposes an image pixel intensity field of dimension    by    (or an image 

that has been expanded to those dimensions by padding with extra pixels), where N is an 

integer value, into a set of      wavelet coefficients and      scaling coefficients which 

describe the image in terms of a wavelet function.  This operation is performed again on 

the resultant scaling coefficients, giving a new set of      wavelet coefficients and      

scaling coefficients, in addition to the      wavelet coefficients left over from the 

previous step.  The operation continues recursively until the image is comprised of 2 
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scaling coefficients and       wavelet coefficients organized in an octree structure, 

and can be reduced no further (Figure 3-7 and Figure 3-8.) [21, 23, 61-63]. 

Wavelets can be used to filter and smooth images by thresholding in several 

different ways.  One method involves removing wavelet coefficients at different scales, 

generally from the smallest scale to the largest scale.  Undesirable noise in an image 

signal is usually a small-scale phenomenon, so scale-based filtering can be an effective 

way to remove it.  Other methods for image filtering regard the wavelet coefficients as a 

measure of energy, and remove coefficients that are either below a predetermined energy 

threshold themselves, or remove a group of coefficients whose sum is less than some 

percentage of the total energy in the transformed image [61, 63].  These thresholding 

operations can also be combined, so that coefficient clipping only occurs at certain levels 

in wavelet space. Figure 3-9, Figure 3-10, Figure 3-11, and Figure 3-12 illustrate the 

results of these filtering techniques using four different wavelet shapes—a Haar wavelet 

(a step function with 2 wavelet coefficients that adheres to the same conditions as 

Daubechies wavelets), and three Daubechies wavelets (the continuous function having a 

minimum of 4 wavelet coefficients as described in Chapter 1; 4, 12, and 20 coefficients 

were tested for this work).  After testing a range of scale and energy filtering levels for 

each of these wavelets, it was found that the most reliable segmentation results were 

achieved using a Daubechies-20 DWT with 0.001% of the total wavelet energy removed.  

Thus, 99.99% of the original image information was retained, giving a high level of 

fidelity, with just enough energy removed to smooth out some of the especially noisy 

―trouble‖ regions. (This also testifies to the ideal nature of the selected test images, as 

little preprocessing was required to make them useful.) 
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Even with wavelet smoothing performed on the images, and a high level of 

contrast overall, it was found that the low pixel resolution of the eel images, combined 

with the narrowness of the animal’s tail, made segmentation of that region particularly 

difficult (Figure 3-13).  The segmentation results produced in this region had jumps in 

them from one frame to another, particularly in the eel’s axial direction (Figure 3-14), so 

it was necessary to truncate the eel’s body at       to prevent this unphysical motion 

from carrying over into the CFD model. 

3.4 Computational surface meshing 

 

Reconstruction of an object’s morphology through arbitrary time step sizes ∆t 

requires knowledge of its surface velocity between image frames (which have a known 

image, or fiducial, time step size ∆T).  The binary field generated by the k-means 

segmentation approach simply provides a scalar value for each pixel in the image 

domain; one more constraint would be required for the construction of a 2-D velocity 

field.  Thus, acquisition of surface velocity was accomplished here by converting the 

binary fields produced by segmenting the eel and duodenum from their respective image 

frames into Lagrangian surface points describing the objects of interest, so that individual 

surface points could be tracked spatially and temporally, and used to supply boundary 

conditions to the surrounding flow field during CFD simulations. This was performed in 

several steps: 

1. Interface location search- Initially, an algorithm was written with the intent of 

being able to locate segmented interfaces in a general fashion, regardless of 

geometry.  The segmentation field value, X and Y locations, and information 
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regarding whether a pixel was adjacent to another pixel possessing a different 

field value from itself (i.e. an interfacial pixel) were all stored in a data structure 

for each pixel in the image domain.  Starting with the first pixel at the lower left 

corner of the image, rows of pixels were swept until one was found possessing a 

different field value from those swept before it (Figure 3-15).  Once this first 

object pixel was detected, each of its 4 neighbors was probed in an anti-clockwise 

direction (in the order east, north, west, and south) to find whether it was (a) an 

interfacial pixel and (b) a pixel with a different field value from the current one 

(Figure 3-16).  Whenever both of these conditions were met, a point was 

constructed on the interface and its address in the domain stored.  Once probing 

was finished, the pixel was tagged as ―complete.‖  The next pixel to be visited by 

the algorithm was either the last one found possessing a different field value from 

the current pixel, or the last interfacial cell found that was not marked ―complete.‖  

In this way, the search algorithm would march back and forth across the interface, 

storing point locations along the way (Figure 3-17).  

However, it was quickly discovered that this general searching and point 

placement algorithm was not satisfactorily robust, and could be made to fail 

relatively easily if a segmented field contained protrusions that were 1 or 2 pixels 

in width.  An example of this type of situation is illustrated in Figure 3-18 and 

Figure 3-19.  

Due to the fact that both the eel and duodenum image data sets featured 

slender bodies oriented horizontally with respect to their dominant length, and 

following failure of the original surface point placement algorithm, it was decided 



www.manaraa.com

76 
 

to instead sweep each segmented image frame from bottom to top along pixel 

columns, one column at a time from left to right (Figure 3-20), to determine 

surface locations.  A surface was regarded as existing between two segmentation 

field values of opposite sign, i.e. a change of value from -1 to +1 requires crossing 

an interface:   

    (       )  {
                      
                      

 .  (3.2) 

Whenever a negative value occurred, the Y-location .  
 

 
/ of the corresponding 

surface was stored, giving 2 Y-locations per segmentation field column 

possessing object pixels. 

2. Centerline generation- For the eel, the two stored Y-locations in each column 

were averaged to give a centerline location (Figure 3-21):   

            
                             

 
 .   (3.3) 

Then, the Y-locations were updated to describe their positions above and below 

the centerline, i.e. 

                             ,   (3.4a) 

                             .    (3.4b) 

This operation was performed in order to ensure that the eel’s body would 

maintain symmetry during subsequent smoothing operations, i.e. the upper and 

lower surface contours could not cross each other in an unphysical manner or 

develop any gross displacements to one side or the other.  The duodenum did not 

require this step, being an asymmetric channel with two distinct surfaces that do 

not require matching for surface closure. 



www.manaraa.com

77 
 

3. Centerline and duodenal wall smoothing- The centerline points of the eel and each 

channel wall of the duodenum were smoothed using a Savitzky-Golay filter of 

window size 30 (Figure 3-22); the upper and lower surface locations of the eel 

were updated with respect to its smooth centerline locations. 

4. Lagrangian point placement- Lagrangian points were defined on each surface at 

the interface crossing locations stored earlier between segmented pixels.  Each 

point was made part of an array structure containing information about each 

point’s X- and Y-locations, and velocity components. 

All aspects of the flow solution process take place within an Eulerian 

framework on a Cartesian mesh, so the natural question arises:  Why is there a 

need for Lagrangian point placement and tracking if this is the case?  In the 

present context, Lagrangian information is used solely for the purpose of 

supplying embedded interfaces with velocity information, which is in turn 

extended into the neighboring flow field to generate the corresponding physical 

fluid response.  However, work aimed at obviating these steps has since been 

completed, and shall be the primary focus of Chapters 5 and 6. 

5. Secondary surface smoothing- The eel’s surface points were smoothed using a 1-

D discrete wavelet transform algorithm written as part of this thesis work and 

based on [59-60].  The periodic nature of wavelets makes them ideal for 

smoothing a closed surface such as that of the eel, which must begin and end in 

the same place when circumscribed just as a periodic signal does.  A Daubechies 

20 wavelet was chosen for its favorable de-noising capabilities (its larger support 
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gives a smoother signal representation than smaller wavelets, which are more apt 

to sharply pick out discontinuities); 4 wavenumbers were removed for smoothing.   

6. Point spacing- One of the drawbacks to smoothing closed surface points in a 

manner analogous to 1-D signal de-noising is the fact that point spacing is not 

necessarily maintained; the points are treated as being equally spaced according to 

the DWT algorithm even though they are clearly not, based upon the searching 

and placement method used to produce them.  Points were originally placed on 

the eel in an anti-clockwise direction, with the first and last points lying 

collocated on the eel’s nose, or snout (furthest location to the left in the figures).  

The first point location was preserved by way of its role as a reference location 

during smoothing operations, however, it was found that a gap was produced 

between the first and last points after smoothing was performed, affecting closure 

of the surface.  This was remedied by redistributing the points along the eel’s 

surface so that they became evenly spaced with uniform segment lengths between 

them. 

To accomplish this, the total surface arc length was computed and divided 

into uniform segment lengths based upon the number of points on the surface.  

Starting with the first fixed point on the eel’s nose, an iterative placement routine 

was written to compute the distance between one point    and its next neighbor 

    , traveling around the surface in an anti-clockwise direction.  If the distance 

was found to be greater than the target uniform segment length, the difference was 

subtracted from the point spacing and point      shifted closer to    along the 

vector between them.  Otherwise, the difference was added, shifting point      
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further from point    along the vector between      and     .  The process was 

repeated along the entire surface until the first fixed point at the eel’s snout was 

reached once again, completing the operation and closing the surface. 

7. Point population- Evenly spaced Lagrangian points were made denser by way of 

linearly populating intervals between them with more points in order to ensure 

that an adequate surface description would be interpolated onto the Cartesian 

mesh during flow computations.  The number of points placed on each interval 

was thus decided by the ratio of interval length    to minimum grid spacing 

      on the flow mesh: 

                     .
  

     
/ .   (3.5) 

8. Scaling and shifting- Surface points in each case were scaled and shifted to 

produce physically meaningful length scales and for convenient positioning 

within the computational flow domain, rather than being relegated to operating on 

dimensions relating to pixel count.  Figure 3-23 shows the final set of points 

generated using this algorithm, for the first image frame of the swimming eel 

video.  The points are overlaid on a scaled and shifted version of the original 

image for illustration. 

9. Surface velocity calculation- In order to compute surface velocities, a three-frame 

strategy was utilized to avoid step-wise jumps in (constant) interfacial velocity 

magnitudes between fiducial time steps   .  Upon passing a time value    

             where the position corresponds to a new image frame, surface 

velocities were computed at two fiducial time intervals — the updated current 

image time, and the subsequent image time.  This was performed using interfacial 
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position data from the images at times   ,      , and       , to form 

velocities as  

    
     

  
     (3.6a) 

and

 

 

    
     

  
.     (3.6b) 

Here, x1, x2, and x3 are smoothed, scaled, and shifted Lagrangian surface 

coordinates obtained from the set of three images frames using steps 1 through 8 

outlined above.  The position of the interface is then updated for current time t as 

        (    )  ,    (3.7) 

and the velocity is updated by interpolating at the current time using v1 and v2.  

For all subsequent intermediate time steps between    and      , the position 

is updated using (3.7) with the velocity replaced by an updated interpolated 

velocity; the velocity is then re-interpolated and updated at the new current 

position.  The end result is a linearly changing, rather than constant, velocity 

profile between any two fiducial time steps   ; acceleration is not continuous, but 

the results seem to be stable for the simulations run thus far.   

Clearly, using the Lagrangian method to compute surface velocities 

required an equal number of surface points   to be placed on the modeled objects 

in each of the three frames, as one-to-one point correspondence over the entire 

surface is necessary for a complete description of velocities and positions through 

the fiducial time steps.  This condition was enforced by segmenting and 

smoothing each of the three frames, and placing a first estimate of the surface 

points for each frame based on current total arc length calculated along the entire 
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surface being modeled.  The total number of surface points was then tallied on 

each frame, and the maximum of these was taken as the number of points to place 

on the surface for each of the three frames. 

3.5 Level Sets: Sharp Interfaces Embedded in an Eulerian 

Flow Field 

 

In this body of work, all CFD simulations are computed on a fixed Cartesian 

mesh, with local mesh refinement capabilities providing enhanced resolution of 

interesting physical flow features and regions of fluid interaction with immersed 

boundaries [53].  Interfaces are tracked using a level set field, φ, embedded in the 

computational flow domain, with zero level set isosurfaces representing fluid-solid 

interfaces.   

The level set field represents a signed normal distance from an Eulerian grid point 

in the flow domain to the nearest zero level set contour.  The field is constructed using 

what is known as the Fast Marching Method, a method which marches contours from a 

set of points with known field value (generally on the zero level set isosurface) outward 

by imposing the Eikonal condition [24]. 

 |  |    (3.8) 

The position and motion of a zero level set contour supplies the necessary 

boundary condition information for fluid motion around solid structures being modeled 

within the Eulerian flow field.  Because level set field information is not necessary 

throughout the entire flow domain, but rather is only needed near solid boundaries that 

affect flow patterns, a narrow-band approach is used in which level set field information 
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is stored in a small layer of grid cells adjacent to zero level set contours (of width     in 

each direction normal to the interface) in the interest of computational efficiency.  The 

narrow-band level set field describing the eel’s surface on its first image frame, generated 

using the smoothed Lagrangian points marking the segmentation contour as outlined 

above, is illustrated in Figure 3-24 and Figure 3-25. 

3.6 External Flow: Locomotion of the American Eel 

through its Aqueous Environment 

 

The first simulation case run for this development project was that of the 

swimming American eel, modeled using video footage supplied by Dr. Eric Tytell.  The 

eel was filmed swimming in a water tunnel apparatus, for the purpose of better 

understanding the hydrodynamic consequences of its undulatory, or anguilliform 

swimming motion.  The eel’s dimensions and boundary conditions for the experimental 

setup are supplied in [58].  For the current investigation, 36 video frames containing one 

complete tail beat cycle of the eel’s motion were selected for segmentation, and then 

copied 9 more times in sequence to produce a total of 360 video frames containing 10 

identical tail beats.   

In addition to serving as a demonstration of the image-based modeling techniques 

under development, the eel’s anguilliform swimming motion holds biological interest by 

way of its prevalence as a mode of locomotion seen in a large number of species residing 

in aqueous environments.  It was therefore decided to examine several different 

combinations of Reynolds number and Strouhal number regimes in order to study the 

effect on wake structures, thrust production, and other quantities of physical interest. 
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In Tytell’s work, the eel being studied was measured to be 20 cm in length 

(         ), and was placed in a water tunnel in which it swam at a steady-state rate of 

         , or          .  Thus, the Reynolds number of the swimming eel, based on its 

body length, is roughly 56,000.  The Strouhal number of the swimming eel (   
  

 
, 

where   is vortex shedding frequency,   is the characteristic length of the problem—the 

peak-to-peak amplitude, or distance traversed by the eel’s tail in this case—and   is the 

free-stream velocity of the fluid environment) was reported to be ~0.3, based upon tail 

beat amplitude of approximately 7% of the eel’s body length (       ) and a frequency f 

of 3.1 Hz.  The DNS nature of the flow solver used for these simulations limited cases to 

Reynolds numbers that were more than an order of magnitude lower than what was 

produced by the swimming eel in the experimental setup; Reynolds numbers of 2500 and 

5000 were studied here.  Three different Strouhal numbers, St = 0.3, 0.5, and 0.7, were 

simulated for each Reynolds number regime and examined for variations in wake 

structure and thrust magnitude. 

For each of the simulations run, the model eel was initialized in a domain of 

dimension 5 units length by 2 units height, with a coarse grid spacing of          and 

three levels of mesh refinement, giving a minimum grid spacing of             

     (Figure 3-26, Figure 3-27, and Figure 3-28).  Open flow conditions were simulated 

by initializing the velocity field with a horizontal (u-velocity) magnitude of 1.0, imposing 

inlet conditions of         on the west side of the domain, specifying the east as an 

outlet, and setting Dirichlet conditions with u-velocity of 1.0 on the north and south 

boundaries.  In each case, the eel’s position was fixed for 1000 time steps in order to 

allow for flow field maturation before imposing swimming motion.  Fluid density was 
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specified as      , so that the Reynolds number could be varied simply by changing 

the dynamic viscosity value  .  Strouhal number variation was accomplished by 

specifying the fiducial time step size    between image frames. 

Results of the 6 different cases simulated are encouraging in that they appear to 

share some of the physical trends revealed on review of Tytell’s experimental 

observations, particularly at the lower Strouhal numbers (keeping in mind that we are still 

limited to a 2-D representation here).  In their analysis of wake structures created by the 

steadily swimming eel using particle image velocimetry (PIV), Tytell et al. report finding 

a wake dominated by lateral jets, formed by vortex pairs of opposite sign aligned parallel 

with the direction of flow.  They argue that each reversal of the eel’s tail direction during 

swimming begins a process of shedding boluses of fluid that are ―sucked‖ into the 

troughs of waves traveling along the eel’s body and accumulate in the boundary layer.  

The continuous lateral sweeping of the tail results in vorticity being advected downstream 

from the tail’s tip in the form of an elongated vortical shear layer, which, once shed from 

the rear of the body, is unstable in its geometric configuration and rolls up into two 

vortices—a primary and a secondary vortex—of the same rotational sense.  As the tail 

changes direction, the same thing happens on the opposite side of the body to give 

another primary and secondary vortex pair, each possessing a sense opposite to the 

previous vortex pair.  In this way, two sets of vortex pairs are formed during each 

complete tail beat, resulting in two lateral jets of opposite direction alternately staggered 

in the eel’s wake. 

Figure 3-29 and Figure 3-30 show contour plots of vorticity for one complete tail 

beat cycle at Strouhal numbers of        and       , respectively, and at a Reynolds 
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number of        . Each of these sets of plots reveal vortical wake structures that 

qualitatively support Tytell’s findings; in snapshot (A), the position of the eel’s tail to its 

right side (top side in the figures) leads to a thicker boundary layer on the left side of the 

tail, presumably generated by the body’s curvature.  As the tail progresses from right to 

left (top to bottom in the figures), this ―pocket‖ of fluid is advected downstream while the 

sweeping tail elongates it into a stretched shear layer (B and C).  In (C), instabilities are 

beginning to form in this high-aspect-ratio shear layer once the tail has traversed over its 

maximum lateral distance, and the shear layer pinches off into two vortices (frames D 

and E) of the same sign—a primary vortex and a secondary vortex—that continue to 

separate as they are advected further into the wake.  This result indicates that a line of 

counter-rotating vortices on each side of the wake is just beginning to form, in a manner 

similar to what is predicted by Tytell’s PIV experiments, and may continue to match 

those experiments more closely as physical Reynolds numbers are approached.   

One notable difference between the        and        cases, aside from the 

decreased streamwise spacing caused by increasing the vortex shedding frequency, is that 

the overall width of the wake has decreased with increasing Strouhal number; vortices of 

negative (clockwise) sense being shed from the right side of the eel’s tail have moved 

toward the left side, and vice-versa, so that the vortices are now arranged closer to the 

wake’s centerline. This is likely due to the fact that the transverse velocity has increased 

with respect to separation zone residence time, and so the tail has moved closer to its 

centerline position by the time a vortex leaves its surface on each pass. Examining Figure 

3-31shows that this trend has continued into the higher Strouhal number        case, so 

that vortices in the wake have actually been pulled across its centerline to form the 
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beginnings of a reverse Kármán vortex street. Thus, the wake has transitioned from one 

exhibiting drag signatures to one of thrust production as the Strouhal number has 

increased. 

Figure 3-32 and Figure 3-33 show all three Strouhal number regimes together, at 

Reynolds numbers of         and        , respectively, so that they may be more 

easily compared visually. Both Reynolds number regimes are qualitatively similar, but 

increased diffusion in the lower Reynolds number case has led to vorticity patterns that 

are more stable and thus do not exhibit the same behavior of a high aspect ratio shear 

layer separating into two distinct vortical regions the way those in the         case 

do. For this reason, vortices advecting downstream in the wake also diminish more 

quickly as they are diffused into the surrounding flow. Because the higher Reynolds 

number case offers a better approximation of material reality, it is the focus of 

consideration from here on out. 

Contours of lateral velocity (plotted for all 3 Strouhal numbers in Figure 3-34) 

confirm, at least qualitatively, that the counter-rotating vortices produced by the eel’s tail 

motion result in fluid flowing laterally from the wake, alternating between left and right 

sides as dictated by the tail’s continuously changing direction.  The lateral jets that are 

predicted by Tytell’s experiments are not present here per se, but the low Reynolds 

numbers and relatively coarse resolution of these preliminary cases, along with restriction 

of motion to two dimensions, are likely contributors to this lack of agreement. 

Figure 3-35 shows streamline plots in the immediate vicinity of the eel’s body 

through one complete tail beat cycle for St = 0.7, Re = 5000.  (It should be noted here 

that streamline plots were generated for all of the Strouhal and Reynolds number regimes 
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evaluated, and all were qualitatively identical.)  The most notable feature of this set of 

plots is the fact that it illustrates boluses of fluid traveling along the body lengthwise in 

the troughs of the waveform produced by the eel’s swimming motion.  Again, this seems 

to match well with Tytell’s experimental observations. 

Contours of axial velocity are plotted in Figure 3-36, further illustrating the earlier 

observation that the American eel lacks the signatures of a thrust-generating wake at 

Strouhal numbers of        and       , but that thrust appears once the Strouhal 

number is increased to       . Indeed, at a Strouhal number of       , corresponding 

to steady-state swimming, Tytell’s results indicate similar behavior, raising questions 

about the eel’s swimming efficiency; much energy appears to be expended on lateral 

fluid displacement that does not contribute to forward motion. Yet, anguilliform 

swimming is found to be prevalent in nature, and ocean-dwelling eels migrate over 

extreme distances [2, 58]. Lighthill’s elongated body theory predicts that anguilliform 

swimming should be efficient in the absence of thrust production, though it is an inviscid 

model that does not suffer realisms like drag.  Carangiform swimmers, such as tuna and 

other fish that move using strong, localized tail beats, do produce a wake that has a large 

axial velocity component—even during steady-state swimming—that is typically 

generated by shedding linked vortex rings [64-66]. Thus, their mechanisms for forward 

propulsion are relatively straightforward and obvious.  The steadily swimming eel, 

however, created a wake possessing a relative axial velocity deficit and stronger lateral 

components in these simulations. 

One possible explanation for the eel’s ability to maintain forward locomotion in 

the absence of obvious thrust signatures in the wake lies a little further upstream, in the 
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boundary layer next to its body.  Carangiform swimmers are essentially composed of a 

nearly rigid body being propelled by a flapping tail; most of the fish’s body contributes 

little to reduce drag in the swimming process, and that drag must be balanced by thrust 

generation in the tail in order to maintain steady motion. However, the eel’s anguilliform 

motion possibly helps to decrease drag production by transporting fluid boluses in 

troughs along the length of its body [67]. To help lend further insight, lift and drag forces 

were computed on interfacial fluid cells and numerically integrated to give total body lift 

and drag coefficients:   

    
 

(  ⁄ )    
 (3.9) 

    
 

(  ⁄ )    
 (3.10) 

In Equations 3.9 and 3.10,   and   represent 2-dimensional lift and drag force 

components (force per unit length),   is fluid density,   is bulk fluid velocity, and   is 

the characteristic length scale being considered for lift and drag production. The 

swimming eel is a slender body, so its characteristic length—that which dominates the 

flow physics—is the distance from its nose to its tail. 

These lift and drag coefficients are illustrated in Figure 3-37 and Figure 3-38, 

which show their temporal evolutions through one complete tail beat cycle during steady-

state swimming.  The instantaneous lift coefficients are notable in that they are roughly 

an order of magnitude larger than their corresponding drag coefficients, suggesting the 

possibility of high instantaneous energy costs expended on lateral excursions for the 

benefit of an average positive thrust.  It should be remembered, however, that the eel is 

laterally stationary overall, and so is constantly accelerating fluid in the lateral direction 

between Y-velocity magnitudes of             along portions of its body (Figure 3-34).  
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Maintaining steady-state swimming in a forward direction, on the other hand, requires 

only that fluid is axially accelerated to a velocity sufficient to overcome any momentum 

removed from the fluid in front of the eel’s body [58].  If the eel were accelerating from 

rest to its steady-state swimming speed of           , drag may more closely match lift 

in magnitude.   

One prominent feature of the instantaneous drag coefficient plot is that the vast 

majority of thrust production is seen to occur at the beginning of each tail beat cycle, 

when the tail is situated in its right (top) extreme position and beginning to traverse to the 

left. In each of the cases evaluated here, this was the initial position assigned to the eel’s 

tail from which swimming motion was programmed to commence. Interestingly, this 

behavior has also been observed in experiments and numerical simulations involving 

flapping plates; maximum thrust was found to occur periodically whenever the plate 

returned to its starting configuration [68-69]. It is suspected that this is caused by a slight 

asymmetry in the wake that depends on initial position and direction of motion, and can 

result in the wake deviating from its expected trajectory. Careful examination of the eel’s 

wake plots reveals that the wake is indeed deflected to the right (upward) slightly, rather 

than taking a perfectly symmetrical and horizontal path. Of course, this could also be a 

result of the eel not being perfectly aligned in the images that it is being modeled from, so 

it would be interesting to run some cases in which the tail is initialized on the left 

(bottom) to see whether the wake is similarly deflected to the opposite side. (It could also 

be a different matter altogether: perhaps the eel being filmed was swimming in the 

presence of a cross-flow component and so actually was producing an asymmetric thrust 

signature.) 
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Because drag forces pertain more directly to thrust generation, they will occupy 

the primary focus for the remainder of this analysis. Figure 3-42 is a plot of drag forces 

averaged over one complete tail beat, for each of the Strouhal number regimes evaluated 

in these simulations.  At a Strouhal number of       , the drag coefficient is small—

notable because this is approximately the same Strouhal number of the steadily 

swimming eel that these CFD simulations are fashioned after.  ―Steadily swimming‖ is 

really the key term here; if an animal is swimming steadily, then it cannot be generating 

net thrust because it is not accelerating (assuming that it is sufficiently buoyant as to not 

be constantly working to overcome gravity, i.e. its density very closely matches the 

density of its environment).  Thus, a balance of thrust and drag along the body through 

one tail beat at this Strouhal number is precisely the result anticipated.  

Surprisingly, increasing the Strouhal number to        in these simulations did 

not result in an increase in thrust (a decrease in the drag coefficient) as would be 

expected; in fact thrust did not appear at all until the Strouhal number was increased to 

      . While the wake plots in Figure 3-33, Figure 3-34, and Figure 3-36 anticipate 

this result somewhat, the change is expected to occur motonically [68].  

In order to check these results, a control volume analysis was performed on the 

eel simulations in addition to the surface force calculations. For each case, a control 

volume spanning from 0.5 units length upstream of the eel to 1.0 unit length downstream 

in the x-direction, and spanning the domain (from 0.0 to 2.0 units length) in the y-

direction, was defined in which to calculate a momentum balance (Figure 3-40). Since 

the north and south edges of the control volume lay along the north and south edges of 

the domain, which were assigned Dirichlet boundary conditions, all momentum flux was 
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assumed to occur across the east and west faces. Drag force per unit length experienced 

by the eel’s body was then calculated by integrating over the east (outlet, boundary 2) and 

west (inlet, boundary 1) edges of the control volume: 

    ∫ (  
 ( )    

 ( ))  
 

 
  ∫ (  ( )    ( ))  

 

 
, (3.11) 

where   is the span of the control volume in the y-direction,  ( ) are x-velocity 

components along the control volume edges, and  ( ) are pressure values. The results of 

this control volume analysis are given as instantaneous drag coefficient measurements in 

Figure 3-41 and average drag coefficients for each Strouhal number regime in Figure 3-

42 (plotted along with the average surface drag coefficient measurements for 

comparison). It can be seen that instantaneous wake drag coefficients are similar to those 

found by surface analysis, though shifted temporally on the tail beat fraction axis. This is 

confirmed by the average thrust coefficient plots in Figure 3-42, which bear resemblance 

to each other. Curiously, the        case exhibits a small thrust value when analyzed 

using the control volume method, but this might simply be attributable to error introduced 

by neglecting viscous terms in the analysis. In any case, what is clear is that an actual eel, 

unconstrained by the boundary conditions imposed in these models, would be 

accelerating by beating its tail at higher frequencies in the        range.   

In considering the foregoing physical analyses, it is important to remember that 

their validity is completely dependent upon the fidelity with which the geometry and 

motion of the swimming eel has been represented.  Converting the eel from a set of 

(coarse) images in a video file to a set of manipulated Lagrangian surface points, and then 

to a moving zero level set contour embedded in an Eulerian flow mesh, has caused the 

loss of some features that may be pertinent to the flow physics involved in the eel’s 
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locomotion.  Figure 3-43 illustrates one particularly troublesome example:  truncation of 

the eel’s tail and surface point smoothing has resulted in a modeled tail shape that 

deforms in an unrealistic manner during motion.  When viewed from above, an eel’s tail 

should in reality taper nearly to a point, resulting in a sharply acute edge where the two 

sides of its body meet.  The sharpness of the tail has been lost in these models, resulting 

in more of a bluff-body situation with regard to vortex shedding into the wake behind.  In 

addition, the width of the tail changes during motion, and symmetry is not maintained at 

the point where the left and right halves of the eel’s body meet.  The vector fields plotted 

in Figure 3-43 reveal flow patterns around the eel’s tail that would not necessarily be 

expected if it tapered nearly linearly to a point as it should, which may cause a disparity 

between actual and modeled vortical transport and its resultant wake morphology and 

thrust generation. 

Perhaps most importantly, it should be borne in mind that maintaining one-to-one 

correspondence of Lagrangian surface points between sets of frames, along with surface 

closure and connectivity to the Cartesian fluid mesh, required much manipulation of 

points in a direction tangent to the surface they were supposed to represent. Such 

tangential motions caused by point population and subsequent shifting to give equal 

intervals have nothing to do with motion in material reality, and so contributed 

undesirably to the surface velocity calculations used to set boundary conditions on the 

flow mesh during CFD simulation. While these spurious velocity contributions should be 

small relative to bulk fluid motion, owing to the close spacing of Lagrangian surface 

points, they nonetheless arise in an unfortuitous place; namely, the surface responsible for 

generating all of the shear responsible for vorticity generation and propulsion. 



www.manaraa.com

93 
 

Despite these limitations present in the current method, qualitative results were 

still felt to be sufficiently encouraging to justify further development of this paradigm of 

generating CFD models from image files.  With a purely Eulerian system and higher 

resolution video images, high-fidelity complex simulations were seen to present 

themselves within the realm of near-future possibilities. 

3.7 Internal Flow: Mass Transport and Mixing in the Small 

Intestine 

 

The swimming eel described in the previous section represents an external flow 

problem; fluid transport through internal systems represents the other major component 

of fluid mechanics research, and shall be the present topic of discussion. 

The gastrointestinal tract is a uniquely interesting internal flow system, in that it is 

able to transport a wide variety of fluids and particulate slurries at any point throughout 

its length—some sufficiently viscous and particle-laden as to barely qualify as fluids in 

the classical sense—simply through the organized actuation of its surfaces, without the 

assistance of any upstream pumping mechanism.  All of this occurs for the singular 

purpose of extracting the chemical energy required to keep its owner alive (while 

removing what is not needed), and it happens with sufficient efficiency to leave plenty of 

energy left over for all of the intrinsic and extrinsic processes that make life what it is.  

Dr. Konrad Schulze, a physician with the University of Iowa’s Department of Internal 

Medicine, has been researching gastrointestinal morphology and flow for the purpose of 

providing a greater level of biological and clinical insight to the field.  A video file of an 
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excised guinea pig (Cavia porcellus) duodenal segment contracting in a fluid tank was 

used to create the simulations discussed in this section. 

The duodenum is the first part of the small intestine, where gastric chyme is 

deposited from the stomach through the pylorus (the ―gatekeeper‖ described in Chapter 

2).  It is thought that the primary role of the duodenum is one of mixing; pancreatico-

biliary secretions are introduced to the chyme from the stomach here by way of the 

common bile and pancreatic ducts [70], and the fluids are mixed via peristaltic 

contractions while being slowly transported distally [5].  In Schulze’s experimental setup, 

a duodenal segment of approximately 10 cm in length and ½ cm in diameter was excised 

from a male guinea pig and placed into a fluid tank containing an isotonic solution 

(Krebs), spanning between two stopcocks attached to sections of tubing that each led to a 

small fluid reservoir cup.  The duodenum was primed, and the cups filled, with Krebs 

solution, so that peristaltic motion by the duodenal segment would produce flow from 

one cup (referenced as the inlet, or proximal, cup) to the other (the outlet, or distal, cup), 

and vice-versa. 

Just as with the American eel simulations described in the previous section, the 

AVI video file provided by Dr. Schulze was converted to a set of raw data files using 

Matlab 2007A, and those were segmented using the simplified k-means approach 

outlined earlier.  A set of 300 frames was chosen, each frame separated by a physical 

time of 0.33 seconds, with the whole set corresponding to a sequence of 7 primary 

duodenal contractions occurring over a period of 99 seconds. Correlating pertinent data 

for the study were recorded during image acquisition and supplied by Dr. Schulze.  The 

provided data included proximal and distal cup volumes, obtained by weighing each cup 
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continuously throughout the experiment, pressure through the proximal and distal 

stopcocks, and duodenal diameter measured at 32 evenly spaced locations along its 

length using an open source program called Motility Mapping (Figure 3-44).   

In order to facilitate segmentation and limit it to regions of interest, the duodenal 

images were cropped between the two stopcocks to which the duodenum was attached.  

After pre-processing the image segments using all of the steps outlined early on in this 

chapter, fixed inlet and exit regions were added to the channel flow domain.  This was 

done for several reasons:  1) inlet and exit segments of the computational flow domain 

must remain a constant width to enforce boundary conditions and maintain mass flow 

conservation; 2) the experimental setup featured fixed inlet and exit tubing sections, so it 

made sense to provide the same conditions computationally; and 3) axial extension of the 

domain was desirable to prevent scalar species blocks (first described in Chapter 2), used 

to measure flow mixing rates, from exiting the domain and thus ceasing to fulfill their 

purpose.  All lengths were normalized based upon the fixed inlet diameter for convenient 

Reynolds number calculation.  The result was a domain of 30 units length by 3 units 

height, with a coarse grid spacing of        .  Local mesh refinement was used to 

reduce this spacing up to 2 more levels to              where necessary to resolve 

boundaries, flow features, and regions containing scalar species (Figure 3-45 and Figure 

3-46).    

Using the data provided by Dr. Schulze, a maximum Reynolds number at the inlet 

was calculated so that flow conditions could be matched in the simulations.  In the 

absence of directly provided inlet velocities, the Reynolds number was computed using 

proximal cup volume data (Figure 3-47).  The proximal cup volume was given in ml (or 
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   ), and it was known that the tubing to which the duodenum was attached had an 

internal diameter of approximately ½ cm (giving a cross-sectional area of roughly 0.196 

   ).   

    
 

 
(      )             (3.12) 

The maximum cup volume change was averaged over a 5 second period, to eliminate the 

effects of noise in measured values, resulting in a maximum volumetric flow rate of 

            .   

      
             

   
      

   

 
  (3.13) 

The maximum volumetric flow rate was used in turn to give a maximum inlet velocity: 

            
    

  
      

 

 
  (3.14) 

A kinematic viscosity of                 (            ) was used to approximate a 

Reynolds number of 20.5, assuming Krebs solution to have properties similar to liquid 

water: 

         
                

 
       (3.15) 

After calculating the maximum inlet Reynolds number to set boundary conditions, 

it was discovered that a key piece of information, required for image-based modeling of 

this experiment to proceed, was missing:  it was not known precisely which image frames 

in the video file were used to generate the data provided.  Thus, there was no correlation 

between what was happening in the selected image frames and what was happening with 

the inlet reservoir cup.  Assuming that the imaged frames are essentially nothing but 2-D 

projections of the duodenum’s channel area, it was decided to investigate whether the 

channel diameters recorded by the Motility Mapping program could be used for 
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generating the necessary boundary conditions.  31 trapezoidal panels of approximate 

width 1/3 cm were used to estimate the total channel area of the imaged duodenal 

segment; each panel was constructed using 2 adjacent point pairs.  For each panel, the left 

point pair was defined as being separated by distance  , and the right was defined as 

separated by distance  .  The panel width of 1/3 cm can be denoted as  .  Each panel’s 

area was then calculated as: 

           
 

 
(   )  

   

 
  (3.16) 

Summing the panel areas gave an approximation of the total 2-D channel area for each 

time step n in the provided data set (Figure 3-48): 

         
  ∑   

   
    (3.17) 

Examination of the data in this manner revealed a strong correlation between flow 

to and from the proximal cup, and changes in the inverse projected area of the contracting 

duodenal segment (Figure 3-49).  This was particularly true in the period of time between 

40 s and 80 s, where the volumetric flow rate appears to have reached a kind of quasi-

steady-state behavior.  Thus, it was decided to calculate channel area during image 

segmentation and construction of the geometric model and store it, for each fiducial time 

step, for use in calculating inlet velocity boundary conditions for the flow domain.  The 

maximum change in inverse area throughout the image frame set was found to be 

approximately          , or 1/1312.  It was desired to generate a maximum inlet 

velocity of                for convenient maximum Reynolds number evaluation by 

way of simply altering the fluid’s dynamic viscosity, so the inlet velocity was set as 1312 

times the change in inverse channel area between any two image frames.  With a fiducial 
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time step size of          , the inlet velocity for any image time step n could then be 

written as: 

       
  

   

  
.

 

   
 

    /  (3.18) 

Inlet velocities were linearly interpolated for intermediate time steps    in the same 

manner as interfacial velocities as described earlier in this chapter.   

Small oscillations in the channel walls between fiducial time steps resulted in a 

noisy temporal inlet velocity profile that led to difficulties converging pressure in the 

flow solver.  Therefore, the entire inlet velocity profile was smoothed using a Savitzky-

Golay filter of window size 20, chosen for its ability to remove noise while maintaining 

the original curve’s overall behavior (Figure 3-50). 

With boundary conditions established and coupled with the morphology of the 

imaged duodenum, it was decided to run simulations at three different Reynolds numbers.  

The first simulation was run at        , closely matching that of the actual guinea pig 

duodenum being modeled.  The second and third runs were performed at          and 

        , respectively; the human duodenum is on the order of 2.5 cm in diameter 

[personal communication with Dr. Konrad Schulze], which is 5 times the diameter of the 

guinea pig duodenum.  Thus, a Reynolds number of 100 would be produced if the 

velocity were held constant with the geometry increased to human scale.  Concurrently 

increasing inlet velocity to match the velocity/diameter ratio of the guinea pig leads to a 

Reynolds number of 500.   

The physical experiments were performed with Krebs solution, which is similar to 

water in viscosity.  It is likely that chyme will, in actuality, have different characteristics 

if anything but water or a similar liquid is ingested, so it is hoped that the Reynolds 
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numbers studied here will provide insight for a range of mixing possibilities.  It was not 

possible to run a maximum inlet Reynolds number higher than 500, as the resultant jet 

through narrowing portions of the duodenum produced localized Reynolds numbers that 

were too high for direct numerical simulation (DNS) of flow on such a course mesh 

without some sort of turbulence modeling capabilities. 

Figure 3-51, Figure 3-52, and Figure 3-53 illustrate contour plots of axial velocity 

within the flexible portion of the channel (representing the duodenal segment itself) for 

each of the three Reynolds numbers simulated.  This set of images shows 6 instants 

during the first peristaltic contraction and subsequent expansion, taking place over a 

period of 13.2 s.  Frame (A) (14.52 s into the simulation) marks the very beginning of the 

peristaltic cycle, effecting primarily axial transport from the proximal end to the distal 

end of the duodenum.  Contraction continues through frame (B), where distal axial 

velocity has grown considerably in magnitude due to the squeezing of the channel near its 

center as peristaltic wave amplitude approaches its maximum.  In frame (C), the channel 

width has reached its minimum, and is beginning to expand back toward its resting state, 

starting the process of flow reversal.  Frame (D) shows that the channel has widened 

considerably in the single second that has passed since frame (C), producing a strong 

backflow toward the proximal end of the duodenum.  Expansion decelerates through 

frame (E) until the resting configuration shown in frame (F) is reached.   

Axial velocity magnitudes are similar in each of the Reynolds number regimes, 

because Reynolds number was determined by setting the dynamic viscosity of the fluid 

while keeping the inlet boundary conditions the same between cases.  However, flow 

field stability is clearly different between the cases;         gives a fairly smooth axial 
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velocity profile considering the complexity of the waveform effecting it, while     

     shows clear signatures of flow field instability—increasingly so as the channel 

expands and flow reverses.   

Contours of vorticity (Figure 3-54, Figure 3-55, and Figure 3-56) and streamline 

plots (Figure 3-57, Figure 3-58, and Figure 3-59) for the same instants in time further 

illustrate the complicated flow features generated by increasing the Reynolds number.  

For the low Reynolds number case (       ), a thick boundary layer is formed and 

pushed distally as fluid is squeezed through the contracting channel, but remains stably 

attached to the channel walls throughout the peristaltic cycle.  Streamlines indicate that 

fluid is initially pushed radially until the axial velocity generated by the traveling 

peristaltic wave becomes sufficient to orient the streamlines parallel to the channel walls.  

As axial velocity slows and then reverses while the channel opens up, streamlines move 

once again toward an orientation perpendicular to channel walls. 

  Increasing the Reynolds number to          results in a thinner boundary 

layer that is more sensitive to flow reversal and channel expansion; Figure 3-55 (C) 

indicates that the boundary layer formed during forward transport of fluid from proximal 

to distal is lifted from the channel walls as the flow reverses and the channel widens.  The 

separated boundary layer has an aspect ratio that is too high to maintain naturally, and so 

rolls up into a series of weak vortices.  However, the Reynolds number is still of an order 

in which viscosity exhibits a strong presence, and the vortices quickly dissipate into the 

surrounding flow field as a result.   

The high Reynolds number of 500 produces the most interesting flow field 

topology of the three cases.  The thin boundary layer generated by the squeezing action of 
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the duodenum is highly unstable when the flow reverses and the channel opens (Figure 3-

56 and Figure 3-59 (C) and (D)), and quickly rolls up into a series of vortices which are 

now slower to dissipate due to their relatively higher momentum (Figure 3-56 and Figure 

3-59 (E)).  The final result when the channel returns to its resting state is a series of 

counter-rotating vortices, alternating in rotational sense, covering roughly 1/3 of the 

channel’s length (Figure 3-56 and Figure 3-59 (F)). 

Just as in the idealized geometric representation of the pylorus in Chapter 2, 

passive scalar species blocks were placed in the duodenal domain for each of these cases, 

as a way of quantifying mixing effectiveness.  Three species blocks (          ) were 

initialized in each simulation, with a concentration value of 1.0 and an area of 0.5 square 

unit length (1.0 unit length by 0.5 unit height).  The blocks were spaced evenly in the 

flexible portion of the channel, centered about        ,         , and         , 

respectively, and allowed to advect passively with the flow according to the transport 

equation: 

 
 

  
∭    ∮ (   )   

 

  
∮       (3.19) 

The Peclet number,    (   )  , was kept large by way of setting the 

diffusivity constant D small (10
-5

) for each of the scalar species blocks, yielding a small 

right hand side to Equation 3.17 and ensuring that scalar species would follow fluid 

streamlines without mixing much by way of diffusion compared with advective mixing. 

 Figure 3-60 through Figure 3-62 show evolution of the first scalar species 

block, centered about        , through the duodenum during the first peristaltic 

contraction cycle, for each of the three Reynolds numbers.  Frames (B) through (G) 

represent the same instants of time illustrated previously in plots of axial velocity, 
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vorticity, and streamlines.  It is clear that increasing flow field complexity leads to more 

vigorous mixing of the scalar species present in the channel.  The         case simply 

acts to stretch the block axially during contraction, and subsequent expansion and flow 

reversal simply leave the species oriented in a quasi-parabolic shape that matches well 

with expected internal flow behavior.  Increasing the Reynolds number to 100 yields 

similar results, though small boundary layer instabilities in the region of          

somewhat separate the block into two regions.  This results in the banded quasi-parabolic 

structure seen in Figure 3-61 (F) and (G).  Increasing the Reynolds number further, to 

500, results in an entirely different flow regime which is marked by large-scale 

instabilities and subsequent vortex formation occurring during channel expansion and 

concurrent flow reversal/deceleration.  These vortices stretch the scalar block into long, 

thin sheets wrapping around the vortex cores.  The large increase in area that results from 

such topological stretching of the scalar species field leads to a rapid decrease in species 

concentration; concentration appears to have been reduced by approximately half during 

this first peristaltic contraction alone (Figure 3-62). 

One of the difficulties inherent to quantifying flow field mixing with advecting 

species blocks is that the blocks cannot visit every region of the domain, and so 

mixedness is only measured where the species are transported to at any given instant.  

This introduces the possibility that important flow features may be missed altogether, 

which is illustrated in Figure 3-63: (A) shows the initial placement of scalar block 1, and 

its configuration after one peristaltic contraction with         ; (B) shows the same for 

scalar block 2.  Scalar 1 has clearly been exposed to a region of the flow field that 

exhibits more vigorous mixing than the region visited by scalar 2.  After all 7 primary 
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peristaltic contraction cycles, scalar 1 has decreased by well more than an order of 

magnitude in concentration and spatially occupies nearly the whole of the duodenum, 

while scalar 2 is relatively higher in concentration and confined to a small region in the 

distal end of the channel (Figure 3-64). 

Scalar variance measurements were recorded for each species block φ in the same 

manner as in Chapter 2, where variance is defined as 

    ( )  〈  〉  ∭(   ̅)    (3.20) 

and  

  ̅  
∭   

∭  
 (3.21) 

Normalized variance measurements for scalar blocks 1 and 2 at each Reynolds 

number are provided in Figure 3-65 through Figure 3-69.  Variance and field contour 

plots for species block 3 are not included, because initialization of the block so close to 

the right hand side of the channel eventually caused it to pass out of the domain’s outlet 

during simulations, rendering it useless for data collection.  Figure 3-65 and Figure 3-66 

illustrate the increased rapidity of mixing that comes with increasing the Reynolds 

number, as does Figure 3-70, which shows the final form of species block 1 after all 7 

peristaltic cycles for                    .  All of the Reynolds number regimes 

reduce the scalar variance of each block by a considerable amount throughout the course 

of the peristaltic contractions—at least an order of magnitude in most cases.  With 

        , both species blocks appear to be nearly homogenized throughout the domain 

according to the plots.  However, this raises one of the limitations of quantifying 

mixedness by way of scalar variance measurements that average species concentration 

over the entire domain:  in Figure 3-69 (        ), species blocks 1 and 2 appear to 
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have virtually the same value at the end of the simulation.  Yet, examination of Figure 3-

64 clearly indicates otherwise.  It appears that a low species concentration occupying a 

large portion of the domain gives results that are similar to those of a relatively higher 

species concentration occupying a smaller portion of the domain, at least when the 

absolute magnitudes of both are small.  In future simulations, it may be wise to calculate 

scalar variance measurements only in regions actually occupied by the scalar species, 

rather than averaging over the entire domain. 

The duodenal segment study has given some interesting results, in that they seem 

to support the notion that peristaltic contractions in the duodenum are at least partly 

responsible for enhancing chemical species mixing for the purpose of more rapidly 

effecting enzymatic catalysis and nutrient absorption in the gut.  Unfortunately, the sort 

of data used for direct experimental comparison with Tytell’s eel does not exist for the 

duodenum; the duodenum’s opacity presents a challenge to flow visualization that did not 

have to be overcome with the eel experiments.  In addition, the temporal mismatch 

between the data provided by Dr. Schulze and the image frames used to computationally 

model the experimental setup forced the development of a means to construct boundary 

conditions using projected channel area.  This method was only valid during the time 

period between 40 and 80 seconds in the actual experiment, when quasi-steady-state 

behavior developed—likely as a result of fluid accumulation in the distal cup reservoir 

providing a pressure head at that end of the duodenum in the experimental setup.  Thus, 

only the ―sloshing‖ motion generated during peristaltic contractions was captured in these 

simulations, and overall proximal-to-distal transport was neglected.  Looking at the 

proximal cup volume before and after the burst of peristaltic contractions in Figure 3-47, 
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it appears that the volume changed from roughly 5.2 ml to 4.6 ml over the course of 90 

seconds; this gives a volumetric flow rate of     ̅̅̅̅       cm
3
 s

-1
, or an average transport 

velocity of 0           .  This velocity is more than 12 times smaller than the peak 

velocity generated by peristaltic contractions in the guinea pig duodenum, so it is hoped 

that the skewness toward a mixing regime rather than a transport regime is not 

sufficiently ignorant as to completely invalidate these results. 

3.8 Conclusions 

 

So far, the idea of constructing 2-D computational flow models around moving 

boundaries using image files has been shown to be a viable one.  The power of the 

current method is more clearly illustrated in the duodenal segment model in some ways, 

because the motions exhibited by the duodenum are highly complex and would likely be 

difficult, perhaps even impossible,  to reproduce functionally.  With the image-based 

approach, the functional complexities of geometry and motion no longer matter: it simply 

takes a series of pictures of something and creates a moving surface out of them.  

Simplicity is its primary appeal. 

However, true simplicity has yet to be achieved with the approach taken 

presently, at least as far as implementation and generality are concerned.  Eight tedious 

steps were required to generate the moving eel surface used in running these simulations 

(Figure 3-71), and the results were, in the end, possibly less accurate than what could be 

achieved by defining the eel’s body as a long tapered ellipsoid undulating sinusoidally 

with a wave that grows steadily from head to tail.  Still, higher resolution images should 

capture all of the nuances of shape more accurately than such an idealized geometry 
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would, and the method as developed here did serve as a means to solve the problem of 

how to simulate the moving guinea pig intestine realistically. 

Because image-based modeling holds so much promise in the way of offering a 

simple route to modeling complex phenomena, it is desirable to eliminate tedium from 

the process to the greatest extent possible.  The level set techniques used in generating 

sharp Eulerian surfaces in the flow field as outlined in this work are attractive in their 

simplicity, because problems associated with moving meshes and Lagrangian point 

tracking are completely averted; and so an image-based modeling approach should strive 

to match it in its elegance.  To this end, work outlined in the rest of this dissertation has 

been conducted with the aim of constructing a suitable method for segmenting images 

and directly generating level set surfaces from them, surfaces that can in turn be used 

directly by the flow solver to perform CFD analyses on a wide variety of complicated 

moving objects in the appropriately simple manner deserved by the Cartesian approach. 
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Figure 3-1. The first frames of the American eel (A) and the duodenum video sequences 
(B), respectively.  A high level of contrast allowed for straightforward 
segmentation, but the relatively small number of pixels yields coarse 
segmentation contours that are not resolved well enough to perform flow 
calculations on directly.  Thus, heavy population and smoothing of 
Lagrangian surface points is required. 

  

 A 
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Figure 3-2. An arbitrary curve is initialized on the image pixels (A) and evolved based 
upon the relative intensities of inner region    and outer region    until curve 
C closely matches the contour of the body (B).  The entire process generally 
takes 5 to 6 iterations to complete. 
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Figure 3-3. The pixel-resolution binary field (A) and resultant segmented boundary (B) of 
the American eel, during the first image frame of the video sequence, 
segmented using the K-means approach outlined in Fedkiw and Gibou. 
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Figure 3-4. The pixel-resolution binary field (A) and segmented boundary (B) of the 
guinea pig duodenum studied in vitro, during the first image frame of the 
video sequence, segmented using the K-means approach outlined in Fedkiw 
and Gibou. 
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Figure 3-5. A duodenal image frame prior to cropping.  The image was cropped to isolate 
the duodenum before any segmentation or other operations were performed. 
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Figure 3-6. Blending along object contours leads to a checkerboard pattern in the image 
pixels, necessitating preprocessing of the image to create smooth 
segmentation boundaries.  This problem is far more marked in the eel video 
frames (A), which have roughly half the resolution of the duodenal images 
(B). 
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Figure 3-7. The discrete wavelet transform of the IEEE standard test image ―Lena‖: 
Original image (A) and the image transformed using a Haar wavelet (B), with 
2 levels of scaling coefficients shown for illustration. Transforming the image 
in this manner continues to reduce it in detail until only 2 scaling coefficients 
remain. 
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Figure 3-8. Wavelet energy at all scales in the first American eel image frame.  Threshold 
filtering and smoothing can be accomplished in three ways:  removing 
wavelet coefficient scales (generally from smallest to largest), removing 
wavelet energy that falls below a specified threshold at any given data point, 
or removing some percentage of the total wavelet energy (starting with the 
lowest energy values and working upward until the specified fraction is 
reached).  Filtering by scale removes features of a particular size, while 
filtering by energy retains dominant features regardless of their size in the 
domain.  Note that the image has been padded with extra cells to give it 
dimensions of length 2

N
. 
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Figure 3-9. First frame of the American eel image, filtered using wavelets with 2 scales 
removed:  Haar (B), Daubechies-4 (C), Daubechies-12 (D), and Daubechies-
20 (E).  The original image is shown in (A) for comparison. 
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Figure 3-10. Segments resulting from filtering images by removing wavelet scales, 
corresponding to the images in Figure 3.9.  The differences are subtle, but 
they are there, particularly in the tail region. 
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Figure 3-11. The American eel image with energy removed using different wavelet 
shapes:  Haar wavelet with 1.0% energy removed (B), Daubechies-4 with 
1.0% removed (C), Daubechies-12 with 0.01% removed (D), Daubechies-20 
with 0.005% removed (E), and Daubechies-20 with 0.001% removed.  The 
original image is shown in (A) for comparison. 
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Figure 3-12. Haar 1% (A), Daub4 1% (B), Daub12 0.01% (C), Daub20 0.005% (D), 
Daub20 0.001% (E).  The Daubechies-20 wavelet with 99.99% of the total 
energy retained (E) was found to give the most consistent segmentation results 
for all of the simulations performed in this work. 
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Figure 3-13. Poor contrast in the eel’s tail made this region particularly susceptible to 
inconsistencies in the final segmented shape between any two image frames.  
Shown are tail positions in the first frame (A) and 28 frames later (B) in the 
swimming sequence.  The problem was mollified by ―chopping off‖ the tail: 
image frames were cropped at       pixels and the tip of the tail was thus 
eliminated from view.  Note that this has the undesirable effect of changing 
the eel’s overall length as it swims. 
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Figure 3-14. Jumps in the segmented tail tip location, caused by poor contrast in this 
region of pixels, were eliminated by ―chopping off‖ the tail at       prior 
to populating the surface with Lagrangian points.  Shown are 4 sequential 
segmented image frames (18 through 21) out of a set of 36 frames 
representing one complete tail beat cycle.  The X-location of the tail tip on the 
pixel grid has values 248.0 (A), 245.0 (B), 249.0 (C), and 250.0 (D), 
potentiating unrealistic flow field calculations brought on by spurious 
interfacial movements—particularly troublesome in a region so important in 
governing vortical transport behavior. 
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Figure 3-15. In the general algorithm, searching proceeds until the first pixel is found that 
has a value which is different from that of the starting pixel (the pixel at the 
lower left corner, in this case). 
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Figure 3-16. The neighbors of each cell are searched, and their field value and interfacial 
cell status is recorded.  In this figure, interfacial cells inside the object are 
colored dark grey; interfacial cells outside the object are colored light grey.  
Each cell is tagged once it has been visited by the searching algorithm, so that 
it will not be visited again. 
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Figure 3-17. The search path; interfacial locations are stored whenever a change in field 
value is detected. 
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Figure 3-18. A geometric configuration that will promptly kill the general search 
algorithm outlined here.  Inner and outer regions both feature protrusions that 
are two pixels in width, a situation this algorithm cannot handle. 
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Figure 3-19. The troublesome geometry outlined in the previous figure, with interfacial 
cells and the failed search path illustrated. 
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Figure 3-20. In order to avoid the potential problems of the generalized searching 
algorithm, searching is performed in the direction perpendicular to the 
segmented object’s dominant length direction (the Y-direction was searched 
for both the eel and duodenum), in order to find the locations of interfacial 
pixels in the binary field and populate the segmented boundary with 
Lagrangian surface points.  The eel’s head is shown here for illustration of the 
process. 
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Figure 3-21. The centerline location of each column of segmented pixels was stored for 
each of the eel image frames, then smoothed using a Savitzky-Golay filter 
with a window size of 30 points.  Upper and lower surface locations were 
subsequently shifted to maintain their original distance from the smoothed 
centerline.  For images from the duodenal experiment, the upper and lower 
surfaces of the channel were treated independently, smoothing each with a 
Savitzky-Golay filter and eliminating the centerline step.  
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Figure 3-22. The smoothed centerline of the American eel overlaid on the original 
segmentation contour for the first image frame. 
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Figure 3-23. Smoothed points mark the boundary of the American eel, ready for 
conversion to a zero level set contour in the Eulerian flow domain.  After the 
original upper and lower surface points were shifted with respect to the 
smooth centerline, they were re-spaced to produce even segment lengths 
between them and populated with additional intermediate points to avoid an 
undesirably sparse surface description on the fine flow calculation mesh.  
Further smoothing was performed using a Daubechies 20 wavelet transform 
and removing contributions from the four smallest (highest resolution) wave 
numbers.  Finally, the surface points were spatially scaled and shifted to 
produce a body of near unit length, positioned for convenient domain 
construction. 
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Figure 3-24. A plot of the narrow band level set field for the first fiducial time step of the 
American eel calculations. 
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Figure 3-25. A plot of the narrow band level set field for the first fiducial time step of the 
American eel calculations, with the zero-level set contour shown for clarity. 
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Figure 3-26. Illustration of the initial computational domain for all of the eel calculations.  
The mesh is refined 3 levels around the eel’s body, left coarsened throughout 
the rest of the domain for computational efficiency until further refinement is 
needed for resolution of flow structures. 
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Figure 3-27. Zero levelset contour embedded within the flow mesh, showing adaptive 
grid refinement near the interfacial boundary. 
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Figure 3-28. The computational mesh for the swimming eel: Mesh refinement captures 
regions of high velocity gradient with greater fidelity, while saving 
computational time by leaving the mesh coarse elsewhere. 
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Figure 3-29. Contours of vorticity plotted through one tail beat.  St = 0.3; Re = 5000.  
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Figure 3-30. Contours of vorticity plotted through one tail beat.  St = 0.5; Re = 5000.  
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Figure 3-31. Contours of vorticity plotted through one tail beat.  St = 0.7; Re = 5000.  
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Figure 3-32. Contours of vorticity at 3 different Strouhal numbers with Re = 2500:  (A) 
St = 0.3, (B) St = 0.5, (C) St = 0.7. 
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Figure 3-33. Contours of vorticity at 3 different Strouhal numbers with Re = 5000:  (A) 
St = 0.3, (B) St = 0.5, (C) St = 0.7. 
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Figure 3-34. Lateral component of velocity at the 3 Strouhal numbers evaluated, for Re = 
5000: (A) St = 0.3, (B) St = 0.5, (C) St = 0.7. 
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Figure 3-35. Streamlines plotted through one complete tail beat; St = 0.7, Re = 5000.  
The streamlines appear nearly identical for all cases, exhibiting ―boluses‖ of 
fluid being transported along the eel’s body in wave troughs as it swims. 

  

A 

B 

C 

D 

E 



www.manaraa.com

142 
 

 

Figure 3-36. Axial component of velocity at the 3 Strouhal numbers evaluated, for Re = 
5000:  (A) St = 0.3, (B) St = 0.5, (C) St = 0.7.  The eel’s anguilliform 
swimming motion produces a set of vortical structures from which momentum 
is primarily ejected laterally; thus, a clear thrust generation signature such as 
that found in the wakes of carangiform swimmers is absent here.  
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Figure 3-37. Lift coefficient on the eel’s body plotted through one tail beat; Re=5000 
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Figure 3-38. Drag coefficient on the eel’s body plotted through one tail beat; Re=5000 
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Figure 3-39. Average surface drag coefficient during one tail beat; Re = 5000. 
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Figure 3-40. A control volume was defined in the domain for analyzing thrust/drag, 
spanning from 0.5 units length upstream to 1 unit length downstream of the 
swimming eel in the horizontal direction, and spanning the entire domain in 
the vertical direction. 
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Figure 3-41. Drag coefficient measured in the eel’s wake plotted through one tail beat; Re 
= 5000. 
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Figure 3-42. Average drag coefficient during one tail beat (control volume and surface 
analyses); Re = 5000. 
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Figure 3-43. The changing shape of the eel’s tail, combined with its rounded tip, may 
lead to a lack of fidelity in generating the correct wake morphology in these 
simulations.  
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Figure 3-44. Screen shot of the Motility Mapping program used by Dr. Schulze to obtain 
the duodenal segment’s diameter at 32 locations along its length (provided by 
Dr. Schulze’s research laboratory).  
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Figure 3-45. The duodenum channel domain is 30 units length by 3 units height with a 
maximum grid spacing of           .  Local mesh refinement reduces 
this spacing up to 2 more levels where necessary to resolve boundaries, flow 
features, and regions containing scalar species (illustrated in the close-up 
view;             .  
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Figure 3-46. The duodenal segment channel (A) was extended beyond the inlet and exit 
regions of the image (B).  This ensured that the inlet and exit to the domain 
maintained the same width, and that the scalar species blocks used to calculate 
mixedness would not pass out of the domain during peristaltic contractions.  

A 

B 



www.manaraa.com

153 
 

 

Figure 3-47. Changes in proximal cup volume, and thus flow through the experimental 
duodenal segment, matched temporally with changes in imaged area nearly 
exactly; i.e. peristaltic contractions immediately effect flow through the 
duodenum.  Knowledge of this led to a method of constructing channel inlet 
boundary conditions despite having data that were mismatched with the video 
sequence.  
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Figure 3-48. The projected channel area of the contracting duodenum.  Data provided did 
not match temporally with the provided video file frames, so these channel 
area data, along with corresponding fluid volumes in the proximal cup 
supplying fluid to the duodenal segment, were used in constructing boundary 
conditions for the CFD calculations performed here.  
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Figure 3-49. The strong temporal correlation between fluid volume in the proximal 
reservoir and projected area of the contracting duodenal segment is clearly 
illustrated here.  The channel area has been inverted, then scaled and shifted, 
so that it closely matches the steady state behavior of the fluid reservoir.  
Temporal changes in fluid volume define flow rates, which in turn define 
velocity if the rate of volumetric flow is through a constant cross-sectional 
area.  Thus, inlet velocity can be defined in terms of changing inverse channel 
area.  
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Figure 3-50. Inlet velocity boundary conditions for the guinea pig duodenum, calculated 
based upon the rate of change of 2D channel area between image frames.  The 
velocity was scaled so that its peak value would be unity, making for 
convenient assignment of maximum Reynolds number based upon the 
channel’s inlet diameter.  
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Figure 3-51. Contours of X-velocity during the first peristaltic contraction of the guinea 
pig duodenum in vitro; Re = 20.  
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Figure 3-52. Contours of X-velocity during the first peristaltic contraction of the guinea 
pig duodenum in vitro; Re = 100.  
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Figure 3-53. Contours of X-velocity during the first peristaltic contraction of the guinea 
pig duodenum in vitro; Re = 500.  
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Figure 3-54. Contours of vorticity during the first peristaltic contraction of the guinea pig 
duodenum in vitro; Re = 20.  

t = 14.52 s 

t = 15.84 s 

t = 17.82 s 

t = 18.81 s 

t = 21.78 s 

t = 27.72 s 

A 

B 

C 

D 

E 

F 



www.manaraa.com

161 
 

 

 

 

 

 

 

Figure 3-55. Contours of vorticity during the first peristaltic contraction of the guinea pig 
duodenum in vitro; Re = 100.  
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Figure 3-56. Contours of vorticity during the first peristaltic contraction of the guinea pig 
duodenum in vitro; Re = 500.  
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Figure 3-57. Streamlines plotted during the first peristaltic contraction of the guinea pig 
duodenum in vitro; Re = 20.  
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Figure 3-58. Streamlines plotted during the first peristaltic contraction of the guinea pig 
duodenum in vitro; Re = 100.  
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Figure 3-59. Streamlines plotted during the first peristaltic contraction of the guinea pig 
duodenum in vitro; Re = 500.  
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Figure 3-60. Contours of species mixing during the first peristaltic contraction of the 
guinea pig duodenum in vitro; Re = 20.  
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Figure 3-61. Contours of species mixing during the first peristaltic contraction of the 
guinea pig duodenum in vitro; Re = 100.  
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Figure 3-62. Contours of species mixing during the first peristaltic contraction of the 
guinea pig duodenum in vitro; Re = 500.  
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Figure 3-63. Initial scalar block placement greatly impacts the quality of mixing 
produced by one peristaltic contraction.  Re = 500.  
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Figure 3-64. Final scalar species concentration field following 7 complete peristaltic 
contraction waves; Re = 500: scalar block 1 (A) and scalar block 2 (B) have 
assumed very different morphologies, though their scalar variance 
measurement is quite similar.  Which should be considered better mixed?  
Note that the concentration scale has decreased by an order of magnitude.  
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Figure 3-65. Scalar variance plotted for species block 1 at all 3 Reynolds numbers 
simulated.  
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Figure 3-66. Scalar variance plotted for species block 2 at all 3 Reynolds numbers 
simulated.  
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Figure 3-67. Comparison of measured mixedness between scalar species blocks 1 and 2; 
Re = 20.  
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Figure 3-68. Comparison of measured mixedness between scalar species blocks 1 and 2; 
Re = 100.  
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Figure 3-69. Comparison of measured mixedness between scalar species blocks 1 and 2; 
Re = 500.  
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Figure 3-70. Final scalar species concentration field following 7 complete peristaltic 
contraction waves; Re = 20 (A), Re = 100 (B), Re = 500 (C).  
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Figure 3-71. Meshing the surface of the eel for flow calculations requires 8 tedious steps.  

5. Surface smoothing 
The eel’s surface points are 

smoothed using a Daubechies 

20 wavelet transform, by 

removing the 4 smallest 

wavenumbers 

2. Object boundary 

location 
Segmented object boundary 

locations on the pixel grid are 

identified and stored 

4. Centerline 

smoothing 
The eel’s centerline is 

smoothed using a Savitzky-

Golay filter, and surface points 

are shifted with respect to the 

newly smooth centerline 

8. Scaling and 

shifting 
The Lagrangian surface is 

scaled and shifted to fit the 

computational domain 

7. Point population 
Pixel grid level points are 

populated with more points 

between them, for an adequate 

surface description on the finer 

flow solver mesh 

6. Point spacing 
Lagrangian surface points are 

re-spaced so that the interval 

between them remains 

constant and the surface fully 

closes 

3. Centerline 

generation 
The centerline of the eel’s 

body is located and stored 

1. Segmentation 
Imaged objects are 

separated from their 

surroundings 
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CHAPTER 4 

A MORE DETAILED LOOK AT IMAGE DENOISING AND 

SEGMENTATION 

4.1 Introduction 

 

In the previous chapter, the ideas of image denoising and segmentation were 

introduced in the context of image-based modeling. Preliminary results were 

encouraging, but a more in-depth look at transforming images (still or moving) from 

various modalities into a form that is compatible with the flow solver was found to be 

necessary to obtain a truly robust and general facility. This was primarily motivated by 

two issues.  First, the shift from a Lagrangian to an Eulerian treatment of image-based 

models requires acquisition of quality segments from images directly, as there no longer 

exists a set of points to smooth and later construct level set contours from. Second, it is 

desirable for an image-based modeling approach to be extensible to 3-D imaging 

modalities such as CT and ultrasound, rather than being restricted to 2-D video files and 

the like. This introduces greater levels of complexity, because available image data 

acquired using such modalities rarely possess ideal levels of contrast and are typically 

plagued by considerable levels of noise. Noise in images can be of two kinds, viz. 

additive and multiplicative noise. While additive noise is common to almost all 

modalities, multiplicative noise (also called ―speckle‖) plays an important role in such 

image acquisition techniques as X-ray CT and ultrasound.  Indeed, much literature exists 

pertaining specifically to noise in medical imaging and ways to deal with the problems 

caused by these two types of noise. Pertinent ideas resulting from a survey of this body of 

literature are discussed presently.  
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4.2 Image Denoising 

 

The key idea that is pursued in this work is the following: 

Since the Eulerian flow solver relies on a Cartesian mesh and an implicit, level set 

based representation of embedded boundaries, it is attractive to present geometries to the 

flow code in the form of level sets. To this end, images acquired by a wide variety of 

means can be processed through segmentation into level set fields that can then be 

employed directly by the flow code; this obviates the rather tedious process of converting 

images into surface meshes and fitting volume meshes to conform to this surface mesh. 

In order to achieve this rather nice ability to bypass mesh generation, level set-based 

segmentation can be employed.  However, the quality of the segmentation can only be as 

good as the quality of information available within the image domain being segmented. 

All real images  (   ) contain some type of noise corruption  (   ) of the 

original signal  (   ), whether caused by film grain or from the acquisition process itself 

[20].  

  (   )   (   )   (   ) (4.1) 

In general, images that are interesting from a modeling perspective contain large amounts 

of noise, which will ultimately lead to the inability of most processing algorithms to 

segment coherent image objects without also segmenting noisy regions or pixels not 

belonging to any objects. Thus, pre-processing images to remove noise is necessary 

before segmentation can proceed.  

Two different test images were chosen for developing the segmentation and 

denoising techniques outlined in this chapter. The first is a ―Shapes‖ test image consisting 

of five shapes with grey level 127 set against a homogeneous background of grey level 
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195, generated specifically for this work (this image is shown along with a 3-D rendering 

of it in Figure 4-1). The second is the IEEE standard test image ―Lena,‖ chosen for its 

widespread use in the image processing literature and consequent provision of a good 

basis for comparison of results.  

For algorithm testing purposes, each of the test images was made noisy with the 

application of one of two different levels of additive Gaussian white noise (a Gaussian 

noise distribution featuring a zero mean added randomly to the intensity signal [20, 71]), 

with standard deviation set to      for a moderately noisy case, and       for a 

highly noisy case (Figure 4-6). Figure 4-8 shows the results of attempting to segment 

noisy images without any pre-processing, with the 3-D rendering provided in Figure 4-9 

clearly illustrating the nature of the difficulties encountered, even when a moderately 

noisy field with       is applied to a 2-tone image containing simple shapes. 

Segmentation generally entails grouping pixels together according to their brightness or 

some property related to it. If some bright noisy pixels appear in an otherwise dark region 

of an image, those bright pixels will be regarded by a segmentation algorithm as 

―belonging to‖ a different group of pixels than the ones in their immediate neighborhood, 

resulting in discontinuous, noisy segmentation patterns. In the specific case of the Shapes 

test image, bright noisy pixels inside the boundaries of the relatively darker shapes will 

be considered part of the background, and dark noisy background pixels will be 

associated with the same group the shapes belong to. For this reason, segmentation is 

necessarily coupled with some sort of denoising facility when applied to real images, 

which will always contain some amount of noise. 



www.manaraa.com

181 
 

Image denoising is an active research topic in the computer graphics community 

with a host of methods available; however, in the present framework the desired 

denoising facility must align with the need to segment images such that the result can be 

conveniently employed in flow computations. Therefore, an assessment of appropriate, 

state-of-the-art competing denoising techniques was made to determine the most suitable 

choice from the point of view of computational modeling.  

The most modest denoising methods involve diffusive blurring, such as applying 

Gaussian filters and isotropic diffusion schemes to images in order to diminish the 

relative magnitude of outlying pixel values. While being effective in noise removal, 

isotropic diffusion methods suffer an inability to preserve object boundaries, as sharp 

edges are blurred just the same as isolated noisy pixels are, without any means for 

discriminating between the two. This is problematic for segmentation, which relies on the 

presence of strong gradients and high contrast in order to conform to object boundaries 

with fidelity. Therefore, based on the imaging modality, the type of system being imaged 

and the precision of the geometric features required to be captured, the choice of 

denoising technique may be different. In the following sections we examine some 

modern denoising techniques to determine their suitability for the types of applications 

targeted in the computational fluid dynamics community. 

4.2.1 Anisotropic Diffusion 

 

In order to address the problem of uniform diffusion destroying valuable image 

information, Perona and Malik proposed a nonlinear PDE for smoothing an image on a 
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continuous domain, known as anisotropic diffusion, in which diffusion rates depend 

locally on image intensity gradients: 

 8
  

  
   , (|  |)    -

 (   )    
  (4.2) 

In Equation 4.2,   is the gradient operator, (  ) is the divergence operator,  ( ) is the 

diffusion coefficient, and    is the original image before processing. Two possible ways 

of setting the diffusion coefficients are suggested: 

  ( )  
 

  (   ) 
  (4.3) 

or 

  ( )     , (   ) - . (4.4) 

In both cases, κ is an edge magnitude parameter with an optimal value that depends on 

image characteristics. The discrete form of the Perona/Malik PDE is written as 

   
       

  
  

| ̅ |
∑  (     

 )     
 

   ̅ 
, (4.5) 

where   
  is the discretely sampled image,   denotes pixel position on a discrete grid,    is 

the time step size,  ̅  is the spatial neighborhood of pixel  , | ̅ | is the number of pixels in 

the neighborhood window (usually the four cardinal neighbors in 2-D), and      
    

  

  
        ̅ . 

In the Perona/Malik formulation, if |  |   , then  (|  |)    (sometimes called 

an all-pass filter), and if |  |   , then  (|  |)    (isotropic diffusion, or Gaussian 

filtering). The idea is to set the diffusion coefficient as a variable that is dependent upon 

image brightness gradients, so that little diffusion occurs in regions having large 

gradients with respect to  , (i.e. at edges) and higher diffusion rates (i.e. noise removal 
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and smoothing) occur elsewhere. In this way, edges are hopefully preserved with greater 

fidelity than that offered by simple constant diffusion rate equations. 

4.2.2 Speckle Reducing Anisotropic Diffusion (SRAD) 

 

Image noise generally comes in two different forms: additive noise and 

multiplicative noise. Additive noise (Gaussian white noise) is the type referred to in the 

beginning of Section 4.2, whereby a normal distribution of noise having zero mean is 

superimposed onto the uncorrupted image signal  (   ): 

  (   )   (   )      (   ). (4.6) 

Multiplicative noise, also known as speckle, shows up in imaging modalities such as 

ultrasound and radar, and takes the form 

  (   )   (   )       (   ). (4.7) 

As can be seen in the above equation, this speckle noise is directly proportional to the 

grey level of the original signal; it increases with signal intensity, and so arises most 

prominently in regions of high reflectivity where backscattering and random fluctuations 

in the return signal are most pronounced [71].  

While the anisotropic diffusion method proposed by Perona and Malik offers an 

improvement over isotropic diffusion in the way of edge preservation in the presence of 

additive Gaussian noise, it does not perform well on image signals corrupted with 

granular speckle patterns which can occupy several pixels and possess gradients that are 

similar in magnitude to those of bona fide edges. It also was found to suffer an inability 

to remove all of the outlying noisy pixels in some of the images studied here without 
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setting   to a value which was sufficiently large to cause the diffusion scheme to 

approach isotropic behavior and over-smooth edges.  

In an effort to address these problems, Yu and Acton introduced further 

improvements to the Perona-Malik algorithm by setting the diffusion rate to be dependent 

not only on intensity gradients, but also on the Laplacian of local intensity values. In their 

so-called Speckle Reducing Anisotropic Diffusion (SRAD) technique, the diffusion 

equation takes the familiar form 

 8
  (     )

  
   , ( )    (     )-

 (     )    (   ) (  (     )   )|    
 , (4.8) 

with    denoting the border of  ,   representing the outer normal vector to   , but with 

the diffusion rate now calculated as  

  ( )  
 

  [  (     )   
 ( )] [  

 ( )(    
 ( ))]

  (4.9) 

or 

  ( )     * ,  (     )    
 ( )- ,  

 ( )(    
 ( ))-+ , (4.10) 

which has a dependence on a new variable,  (     ), called the instantaneous coefficient 

of variation:  

  (     )  √
.
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|  |

 
/
 
 .

 

  
/(

   

 
)
 

[  .
 

 
/(

   

 
)]

  . (4.11) 

The quantity  (     ) is large where there is a large gradient magnitude in the 

image being smoothed, leading to a small diffusion coefficient  ( ). In the presence of 

strong speckling, which is marked by a large Laplacian values,  (     ) becomes small 

and   ( ) increases. The quantity   ( ) is dubbed the speckle scale function, and is 

approximated as 
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   ( )       ,   - . (4.12) 

In the speckle scale function,   is a constant and    is the speckle coefficient of 

variation in the observed image. In a manner analogous to the setting of   in the 

anisotropic diffusion equation, setting    to larger values will generally yield more noise 

reduction, but at the expense of edge preservation. For fully developed speckle such as 

seen in ultrasound data, it is suggested to set     ; for partially correlated data,     . 

In numerical form, gradients are separated into right (forward difference) and left 

(backward difference) (R and L respectively) components so that their magnitude may be 

captured accurately, and discretized on a grid with mesh spacing   in the following 

fashion: 
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Symmetric boundary conditions are set on the edges of the image domain. The discrete 

diffusion coefficient is calculated according to 
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 57,  (4.16) 

and the divergence of      is calculated as 

    
  

 

  [      
 (      

      
 )        

 (      
      

 )       
 (      

      
 )  

      
 (      

      
 )].           (4.17) 

Again, symmetric boundary conditions are applied at domain edges. The image is then 

updated with the SRAD update function and evolved iteratively: 
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   (4.18) 

4.2.3 3D Speckle Reducing Anisotropic Diffusion 

 

In 2004, Acton et al. revisited their method and extended it to three dimensions 

for the purpose of being able to denoise 3-D ultrasound images. The method is nearly 

identical to the 2-D SRAD algorithm, but with  (       ) and the update equation 

scaled appropriately to reflect the addition of the third dimension. The PDE still takes the 

form 

 8
  (       )
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, (4.19) 
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4.2.4 Discrete form of 3D Speckle Reducing Anisotropic 

Diffusion 

 

For 3-D SRAD, derivatives are discretized in a fashion analogous to that in the 2-

D method: 
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with symmetric boundary conditions similarly applied at the boundaries of the 3-D image 

set. The diffusion coefficient is calculated according to  
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 57 ,  (4.25) 

and then the divergence of      is calculated as 
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again, with symmetric boundary conditions applied. The image is then updated with the 

3DSRAD update function, with the divergence now applied to a volume: 

       
          

  
  

 
      

  . (4.27) 

4.2.5 Wavelet Based Multiscale Anisotropic Diffusion 

(WMSAD) 

 

Recently, Zhong and Sun proposed to improve upon anisotropic diffusion even 

further by first casting the image to be denoised into wavelet space before applying 

diffusion. While anisotropic diffusion in image brightness space has been shown to be 

effective at reducing noise, Zhong and Sun claim that it is still too diffusive in the 

presence of large amounts of noise due to the lack of a reliable edge-stopping criterion, 

and that more reliable edge-stopping can be effected in the wavelet domain due to its 
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multi-resolution properties. Starting with the Perona/Malik anisotropic diffusion 

formulation, with the source term scaled by a stability constant   rather than by the time 

step size    [72] 

 (  
    )  (  

 )  
 

| ̅ |
∑  . (    

 )/ (    
 )   ̅ 

 , (4.28) 

Zhong and Sun make use of a new diffusion rate coefficient with more robust edge-

stopping characteristics, defined by Black et al.: 
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In Equation 4.29, the variable   is called a ―scale parameter‖ and represents some 

threshold about the image gradient magnitude |  |, and is set to 

   √   ,  (4.30) 

where    denotes a ―robust statistical scale‖  

               (  ) . (4.31) 

In Equation 4.31, MAD denotes the mean average deviation: 

    (  )         (|          (|  |)|) . (4.32) 

Once the robust scale    and the scale parameter   are known, the anisotropic diffusion 

stability coefficient setting the strength of the source term is calculated as  

   
 

 (    )
 . (4.33) 

In [73], it is claimed that the diffusion algorithm acting on the image transformed 

to image space can be made even more stationary – that is, made so that the image set’s 

mean and variance do not change with time or position – by smoothing the finest scale of 
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wavelet coefficients with a minimum mean-squared error (MMSE) based filter before 

applying anisotropic diffusion. Writing a noisy image transformed into wavelet space as 

  
  
   (   )   

  
  (   )   

  
  (   ),  (4.34) 

with  
  
  (   ) denoting the wavelet coefficient of a noise-free image at location (   ) 

and scale    in spatial direction  ,  
  
   (   ) representing the wavelet coefficient of the 

noisy image, and  
  
  (   ) representing the wavelet coefficient of zero-mean and   

 -

variance additive Gaussian white noise, the local variance in the spatial neighborhood of 

noisy wavelet coefficients can be estimated as 

  ̂     {  
 

| ̅ |
∑ [.  

   (   )/
 

   
 ]   ̅ 

}.  (4.35) 

In Equation 4.35, the noise standard deviation is estimated, using robust statistics, 

as 

  ̂  
      (| ( )|)

      
 , (4.36) 

so that the noise-free wavelet coefficient values at the finest scale may be estimated as 

  ̂ 
  (   )  

 ̂ 

 ̂   ̂ 
   

   (   ).  (4.37) 

With the wavelet coefficients filtered at the finest scale, anisotropic diffusion is applied to 

the wavelet coefficients at the four finest levels. 

  
  
 (  

    )   
  
 (  

 )  
 

| ̅ |
∑  (  

  
 (    

 )  )  
  
 (    

 )   ̅ 
  (4.38) 

Finally, Zhong and Sun propose a method for adaptively setting the stability 

coefficient   based on what they refer to as the interscale ratio, denoted  , of the sum of 

absolute wavelet coefficients (SAWC): 

   
 

    
  (     )

 
  
  (     )

 , (4.39) 
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where the SAWC,  , is an operator classifying wavelet coefficients at the same scale 

within a cone of influence (COI) of a point (     ) (Figure 4-7): 

  
  
  (     )  ∑| ( )| (   )     (     ).  (4.40) 

This simply means that any feature that shows up as a large wavelet coefficient at level 

    in wavelet space should also show up as a set of large wavelet coefficients within 

the            pixels/voxels that correspond to the same imaged region at level  .  

The stability coefficient of diffusion in wavelet space,  , is set to a value that 

represents texture, edges, or regions otherwise determined to be desirable to keep in 

consideration for the final segment if   is larger than some experimentally set threshold. 

Otherwise,   is set to a value that reflects noise, so that the impact of the noisy pixel is 

minimized. In the paper describing this method of delineation,   is experimentally set to a 

value of     . However, little guidance is offered as to how the upper and lower values 

of   should be set.  

Later in this chapter the relative capabilities of the anisotropic diffusion, SRAD 

and WMSAD techniques will be examined in detail and compared according to their 

performance with different types of images. These methods are evaluated based on their 

ability to remove additive and multiplicative noise with different PSNRs (peak signal to 

noise ratios) while preserving physical features (signal) of interest in the images. In 

addition, the ability of each technique to provide accurate segmentation of the embedded 

features in an image will be assessed. 
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4.3 Segmentation using Level Sets 

 

It was mentioned in the introductory chapter that segmentation is the process of 

grouping objects together in a manner which mimics the abilities of the human visual 

system, whereby objects are classified into groups. This allows for the consideration of 

an object as something distinct from that which surrounds it, and provides the basic 

information necessary for constructing an embedded surface and applying desired 

boundary conditions to it in the context of modeling and flow computations. In this 

section, we will examine the segmentation process in detail and expand its capabilities 

within our framework beyond the simple approaches taken in the previous chapter. 

4.3.1 Creating Active Contours through Functional 

Minimization 

 

In 1989, Mumford and Shah proposed using the calculus of variations to 

decompose an image    containing image domain   into two piecewise-smooth 

approximations, separated by a segmenting curve or surface  , through minimization of 

the following functional: 

    (   )    ( )   ∫ (    ) 
 

   ∫ |  | 
   

  . (4.41) 

In this Mumford-Shah functional, as it has come to be known,  ( ) denotes the length of 

curve  , and     and     are fixed weighting parameters set to give what is judged 

to be a good result on a given image field. The first term controls the length and 

smoothness of the segmentation curve, while the other terms separate the image into 

distinct regions in a manner that allows for discontinuities along the edges of each region. 
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Vese and Chan later expanded upon the Mumford and Shah method by proposing 

an algorithm for decomposing an image into two approximately piecewise-constant 

regions, determined by each region’s mean intensity value: 

   (       )    ( )    (  )  

     ∫ |     |
 

  
      ∫ |     |

 
  

   .   (4.42) 

In this Vese/Chan functional,    represents the part of an image domain   that lies inside 

of a segmentation curve  ,           (the region outside of curve  ),  (  ) denotes 

the area of the region    inside the curve, and     ,     ,     and     are again 

fixed weighting parameters which are tuned based on image characteristics for optimal 

results. The variables    and    are generally taken to represent average intensity values 

inside and outside of the segmentation contour (  ̅ and   ̅), respectively, and thus depend 

on the location of the contour itself. 

As a convenient way to track interfacial motion, a segmentation curve may be 

regarded as the zero-level of a level set function that is defined over the image domain  , 

allowing a curve’s length and contained area to be defined as 

  ( )   (   )  ∫ |  ( )|
 

   ∫  ( )|  |
 

  , (4.43) 

  ( )   (   )  ∫  ( )
 

  . (4.44) 

In the curve length and area equations,    (   ) (or  (     ) in 3-D),   represents a 

discrete Heaviside function  ( )  
 

 
0  

 

 
      .

 

 
/1 on a Cartesian grid with mesh 

spacing  , and   is a discrete Dirac delta function  ( )  
 

  
 ( )  

 

 

 

     
. Cast in this 

level set formulation, the Vese-Chan functional becomes 

   (       )   ∫  ( )|  |
 

    ∫  ( )
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     ∫ |     |
 

 
 ( )   

   ∫ |     |
 

 
(   ( ))  ,     (4.45) 

with inner and outer region averages defined as 

    
∫    ( )   

∫  ( )   

     
∫   (   ( ))   

∫ (   ( ))   

 . (4.46) 

Euler-Lagrange minimization of the Vese/Chan functional leads to the level set evolution 

equation 

 
  

  
  ( ) 0   .

  

|  |
/    (     )

    (     )
 1 , (4.47) 

which evolves an initial level set curve of arbitrary shape to convergence at some steady 

state result conforming to the boundary of the object being segmented. The main 

disadvantage of the Chan-Vese approach for segmenting the image is that it is rather 

time-consuming to evolve the level sets via the diffusion equation shown above. To 

address this issue, a modification to the approach that provides rather rapid segmentations 

was proposed by Gibou and Fedkiw.  

4.3.2 Revisiting k-Means Clustering 

 

Gibou and Fedkiw proposed to make the active contour models just described 

more direct by ignoring the first regularization term penalizing curve length, and setting 

the Dirac delta function     in order to extend level set information uniformly into the 

image domain, leading to the ODE introduced in the last chapter: 

 
  

  
       (     )

    (     )
  . (4.48) 

As formulated, Equation 4.48 may be evolved in small steps just as the PDE 

proposed by Vese and Chan, with the level set field illustrated as a hypersurface evolving 
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through the 2-D image space (Figure 4-2 and Figure 4-3). However, it is pointed out by 

Gibou and Fedkiw that the accuracy of level set curve evolution is not of concern to the 

process of segmentation as long as a desirable steady-state result is achieved at 

convergence. Thus, large time steps may be taken in updating the level set evolution 

equation (4.48). In fact, for the images segmented as part of this work, convergence was 

generally reached within 1-3 iterative steps using the simple update scheme 

            
   . (4.49) 

In addition to its speed, the method was also found to possess a nice combination of 

simplicity, robustness, and ability to yield consistently good results for our purposes, and 

so it was adopted for all of the segmentation work pertaining to this thesis. 

The ―level set‖ field that results from the Gibou/Fedkiw method is actually 

nothing but a scaled and shifted version of the original intensity field in the image 

domain; a pixel cast in level set space takes on a value that is maximally of the order of 

the square of the difference between its corresponding local intensity value and the 

average intensity of the region in which it is classified at a particular time, with its sign 

depending upon which region it belongs to. As the level set update equation approaches 

convergence, a pixel belonging to set    (conventionally considered to be inside the 

segmentation curve of an object) will be closer in value to the inner average brightness    

than to the outer average brightness   , resulting in a negative level set value. Similarly, 

pixels belonging to the set    will possess intensity values closer to    than to   , giving  

   . (This matches the standard convention for level set fields employed throughout 

this work, in which negative level set values are considered to be ―inside‖ an interface 

and positive level set values are considered to be ―outside.‖) The amount of zero-level 
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curve bias toward the inside or outside of an imaged object is determined by the relative 

values of the weighting coefficients    (Figure 4-5), which are generally tuned by the user 

to achieve results to their liking. 

In their description of the algorithm, Gibou and Fedkiw suggest setting | |   , 

which leads to a piecewise binary level set field having values of    on which constants 

   may be efficiently computed as 

    
∑  (   )

∑(   )
     

∑  (   )

∑(   )
 . (4.50) 

This is the strategy originally adopted Chapter 3. Unfortunately, the information 

necessary for calculating the zero-level curve position at sub-pixel resolutions is not 

preserved with such a pixel ―painting‖ scheme, resulting in all of the original image 

boundary smoothness being removed. Indeed, the Lagrangian method outlined in Chapter 

3 required a considerable amount of point smoothing after segmentation in order to 

produce a smooth interface, largely for this very reason. 

4.3.3 Interface Construction with Cell Cuts 

 

One of the main points of this work is to dispense with Lagrangian interface 

treatments fraught with tedious point placement and smoothing algorithms, so we wish to 

obtain smooth object contours, without further manipulation, directly from the 

segmentation result. To achieve this, level set values are simply updated to convergence 

using Equations 4.45 and 4.46, then, rather than updating inside and outside coefficients 

using the binary scheme of Equation 4.47, cell cuts are used as a means to calculate the 

position of the zero-level curve generated with the Gibou/Fedkiw algorithm. This allows 

for the subsequent creation of a signed distance level set field within a narrow band 
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defined about the imaged object’s interface by using the fast marching method outlined in 

[24]. The cell-cut redistancing algorithm proceeds as follows: 

1. Each grid point in the image domain is swept over to check whether it is an 

interfacial point. This is easily accomplished by multiplying the level set value of 

any grid point by that of any of its four cardinal (i.e. north, south, east, and west) 

neighbors; if the resulting number is negative, then an interfacial crossing must 

have occurred and the grid point in question lies adjacent to a boundary. 

2. Each interfacial point’s spatial location (     ) is stored. 

3. Considering (     ) as cell-center locations, the number of cuts in each 

interfacial grid cell is determined by probing its four cardinal neighbors. The 

number of cuts is recorded and the distance from (     ) to the zero-level 

interface is calculated using the appropriate method for the number of cuts found: 

a. Case 1- two cell cuts. This is the most straightforward case, as the two cell 

cut locations can be used directly to calculate the level set value at 

(     ).  

i. First, the cell cut locations are calculated and stored: 

      |        |
  

|  | |     |
  , (4.51) 

      |        |
  

|  | |     |
  , (4.52) 

      |        |
  

|  | |     |
  , (4.53) 

      |        |
  

|  | |     |
  . (4.54) 

ii. Cell cut locations (     ) and (     ) are used to calculate an 

interpolation distance  : 
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(     )(     ) (     )(     )

(     )  (     ) 
 .  (4.55) 

iii. The newly calculated interpolation distance is then used to find 

(     ), the address of the points at the foot of the normal vector 

pointing from the interface to (     ): 

       (     )       (     ) . (4.56) 

iv. Finally, the magnitude of the normal vector pointing from the 

interface to each of its adjacent points (     ) is used to calculate 

an updated level set value  ̂: 

| |  √(     )
 
 (     )

 
 ,  (4.57) 

 ̂      ( )| | .   (4.58) 

b. Case 2- three cell cuts. If three sides of an interfacial cell are found to be 

cut, the closest (     ) and (     ) pair to (     ) are used to find 

interfacial distance in the algorithm, which otherwise proceeds as above. 

c. Case 3- one cell cut. In this case, the neighborhood window being probed 

for neighbor information is expanded to include the 4 points located in 

diagonal directions (i.e. northeast, southeast, northwest, and southwest) 

from (     ). (     ) are stored as in the other two cases, but (     ) are 

calculated slightly differently to include the increase in distance brought 

by their diagonal positioning with respect to (     ): 

      |        |
  

|  | |     |
√   ,  (4.59) 

      |        |
  

|  | |     |
√   .  (4.60) 
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4. Once level set values are determined at all of the interfacial points, fast marching 

is used to extend the signed distance level set field from the interfacial points 

outward into a narrow band surrounding the segmentation curve (Figure 4-4). 

Complete details about the fast marching method can be found in e.g. [24, 30]. 

 

Up to this point, nearly the entire discussion about image segmentation has been 

limited to cases involving 2-D images. However, it is appropriate to note here that all of 

the aforementioned techniques have successfully been extended to three dimensions as 

part of this work; results will be shown in section 4.4 below. The 3-D approach is exactly 

the same, but with voxels located at (        ) replacing pixels at (     ), level set 

surfaces  (     ) replacing level set curves  (   ), and cell cuts being performed along 

faces of cells having 6 cardinal and 20 diagonal neighbors rather than through edges of 

cells having 4 cardinal and 4 diagonal neighbors. 

4.4 Test Image Results 

 

Each of the three primary denoising techniques outlined above were tested on the 

―Shapes‖ and ―Lena‖ images with both added Gaussian white noise levels (four image 

cases). Results were qualified based on segmentability of the Shapes image, and 

quantified using the measure of peak signal-to-noise ratio for both: 

      
    

    
  (4.61) 

In Equation 4.61,      refers to the maximum signal power possible in an image 

domain (255) and      is the root mean square signal power measured in the image. For 

reference, the      of the noisy ―shapes‖ image is      for      and      for 
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     , while the      for the ―Lena‖ image is      for      and      for   

   , before the introduction of any diffusive processing. 

4.4.1 SRAD 

 

The first denoising algorithm evaluated was 2-D Speckle Reducing Anisotropic 

Diffusion method of Yu and Acton. For each of the four noisy test images,    was set to 

both 1.0 and 0.25 in order to demonstrate its effect on the final result. In addition, the 

maximum number of iterations was set to both 100 and 500 for each    value on each 

image (convergence was set to     , and was often reached before the 500
th

 iteration for 

the latter cases) in order to assess sensitivity to diffusion time, as well as the effectiveness 

of the edge-stopping criteria intrinsic to the method. 

The results of applying SRAD with        (500 max iterations) are shown in 

Figure 4-10, with a 3-D rendering of the noisy Shapes images after smoothing shown in 

Figure 4-11. Visually, most of the speckle appears to have been removed from all four 

test images.      results on the Lena image also indicate successful denoising, with 

values increasing from 18.7 to 20.8 for     , and from 10.1 to 20.9 for      .  

However,      results indicate an actual degradation of image quality for the Shapes 

image with     , from 18.3 to 11.7, and a marginal increase for Shapes‖ with   

   , from 10.3 to 15.0.  

Setting    to ¼ of this value (0.25) yielded much different results both 

qualitatively and quantitatively. For example,      for Shapes with      increased 

significantly from 18.3 to 24.4, with marginal increases for the other 3 image cases. 

Visually, however, the improvement is scarcely detectable for any of them. 
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4.4.2 Regular Anisotropic Diffusion 

 

The original anisotropic diffusion algorithm of Perona and Malik was tested next 

as a way to assess the relative improvements offered by SRAD and WMSAD. The 

diffusion equation was again allowed to run for a maximum of 500 diffusive time steps, 

with a convergence tolerance set to     . The edge magnitude parameter κ was set to 

both 30 and 100 for each of the images having a noise      in order to evaluate its 

effect. 

Interestingly, the original anisotropic diffusion gave some of the best results of 

any method tested, at least when comparing only the measures of peak signal-to-noise 

ratio. With     ,      was calculated to be 19.6 for both the Lena and Shapes 

images, while      was measured to be 28.9 and 25.3 when       for Shapes and 

Lena, respectively (Figure 4-13). Of course, it should be pointed out that these test 

images were corrupted with additive noise rather than speckle, so anisotropic diffusion 

should not be expected to perform poorly. Nonetheless, the addition of the curvature-

dependent term in SRAD was found to enable the rapid diffusion of isolated noisy pixels 

while preserving edges defined by large gradients. 

4.4.3 Wavelet Based Multiscale Anisotropic Diffusion 

 

The final denoising algorithm tested on the Shapes and Lena images was the 

WMSAD method of Zhong and Sun. For these tests, several different tunable parameters 

had to be selected due to the inherent complexity of the method. Recall that the sum of 

absolute wavelet coefficients (SAWC), computed within the cone of influence of several 



www.manaraa.com

201 
 

different wavelet coefficient levels, is used to calculate an interscale ratio  , which is in 

turn used to set the stability coefficient   which scales the diffusion rate of the denoising 

PDE acting on the image in wavelet space. Experimentally,   was given a few different 

threshold values, including 1.8, the one suggested by the authors. The resulting high and 

low values for   were also varied, with some of the results summarized in Table 4-1 and 

Table 4-2. However, it was found that results were nearly identical when the stability 

coefficient was simply calculated as in Equation 4.30, obviating the need to find an 

interscale ratio or tune its threshold to select between two different stability coefficient 

values (which are also themselves tunable to image properties). The greatest difference 

was actually made through wavelet selection. Daubechies-20 wavelets gave the best 

quantitative results in this investigation, but it is notable that both Daub20 and Daub4 

wavelet types produced good qualitative image denoising (Figure 4-14). Pertinent results 

from all of the test image denoising cases are summarized in Table 4-1 and Table 4-2. 

Although the      results give an indication of perceived visual quality, it was 

found that they predict segmentability of a denoised image quite poorly. Figure 4-15 

shows some of the segmentation results of the denoised Shapes image. SRAD with 

       gave some of the lowest      values out of any of the test cases, yet it also 

produced the only acceptable segmentation results. All other methods retained noise in 

the final segments, making them unusable for modeling purposes.  

Figure 4-16 and Figure 4-17 help to illustrate this point, comparing SRAD to 

regular anisotropic diffusion and WMSAD in 3-D renderings. WMSAD clearly retains a 

great deal of noise, which would require some sort of further processing to remove and 

get the image into a state suitable for segmentation.  
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Table 4-1.PSNR results of denoising methods applied to the Lena test image. 

Image Method Itersmax ISR λ1 λ2 Wavelet σ qo κ PSNR 

Lena 

SRAD 

100 

- - - - 

30 
1 

- 

22.2 

100 21.7 

30 
0.25 

21.4 

100 10.6 

500 

30 
1 

20.8 

100 20.9 

30 
0.25 

21.4 

100 10.6 

WM-

SAD 
100 

1.8 

5 

0.1 Daub4 

30 

- - 

25.5 

5 100 17.2 

0.25 30 25.7 

0.1 

5 30 

25.7 

1 25.7 

10 25.7 

auto - - 

Daub4 30 25.7 

Daub20 30 26.3 

Daub4 100 17.1 

RAD 
100 

- - - - 30 - 

30 19.2 

100 25.3 

500 30 19.6 

 

 

The original anisotropic diffusion scheme actually provides very good results 

overall, but was unable to remove all of the outlying ―speckles‖ (seen as spikes in Figure 

4-17), illustrating the usefulness of Yu and Acton’s Speckle Reducing Anisotropic 

Diffusion method.  
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Table 4-2. PSNR results of denoising methods applied to the Shapes test image. 

Image Method Itersmax ISR λ1 λ2 Wavelet σ qo κ PSNR 

Shapes 

SRAD 

100 

- - - - 

30 
1 

- 

12.4 

100 16.5 

30 
0.25 

24.4 

100 11.0 

500 

30 
1 

11.7 

100 15.0 

30 
0.25 

24.4 

100 11.0 

WM-

SAD 
100 

1.8 

5 

0.1 Daub4 

30 

- - 

18.6 

5 100 16.8 

0.25 30 18.7 

0.1 

5 30 

18.7 

1 18.7 

10 18.6 

auto - - 

Daub4 30 18.7 

Daub20 30 17.5 

Daub4 100 16.7 

RAD 

100 

- - - - 30 - 

30 19.0 

100 28.9 

500 30 19.6 

 

 

So far, SRAD appears to be the superior method of those tested, at least for the 

purpose of segmenting the simple test image generated here. In addition to removing 

speckle, it also possesses an inbuilt contrast enhancement feature as regions away from 

edges continue to diffuse toward a homogeneous steady state. This results in low      

values, but it also results in crisp edges that are favorable to reliable segmentation. 



www.manaraa.com

204 
 

4.5 Real Image Results 

 

Test images such as those discussed to this point were quite useful in the 

development and preliminary testing of our image processing algorithms, but actual 

images in two and three dimensions are this work’s real impetus. Thus, this chapter 

concludes with an evaluation of SRAD and WMSAD applied to two different data sets: 

The first is a set of CT slices acquired of a cylindrical concrete sample (provided by 

personnel at Eglin Air Force base), and the second is an ultrasound image of a liver, taken 

from Philips’ ultrasound image library available online [74]. 

4.5.1 CT Image Slices of Concrete 

 

This first image set, a series of 679 CT slices of concrete taken at 1 mm intervals, 

with dimensions of         pixels, was acquired as part of an ongoing research effort 

for the USAF (one slice is shown in Figure 4-18 as an example), and denoised and 

segmented using either SRAD with         /       , or WMSAD with Daubechies-

4 wavelets and   
 

 (    )
 . It proved to be an excellent developmental tool, as it 

challenged denoising methods with large amounts of noise that had as much variation as 

there was contrast in the baseline image intensity, and it provided a means of testing the 

methods being developed as they were extended into 3-D. 

All of the denoising methods were first tested on a single 2-D slice before moving 

on to smoothing and segmenting the entire volume. A small code was written in Matlab 

to crop the original images so that only a square region would remain about the center of 

the concrete sample, removing the empty black space outside the cylindrical specimen. 
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The cropped image was also re-scaled to have dimensions of         pixels, for the 

purpose of eliminating excessive computation time and data storage during testing. 

Figure 4-19 (a) shows the cropped and re-scaled original concrete slice before 

denoising, while Figure 4-19 (b-c) show the results of denoising with SRAD       , 

SRAD        , and WMSAD Daub4, respectively. It can be seen that all of the 

methods visually appear to have increased contrast and diminished noise compared to the 

original, with SRAD         and WMSAD appearing to blur edges the least and retain 

most of the original visual information. However, subsequent segmentation results 

(Figure 4-20) reveal that WMSAD was unable to remove a sufficient amount of noise to 

produce an acceptable segment.  

In Figure 4-20 the segmentation curves are shown superimposed onto the original 

image slice. Both SRAD cases produced usable segments, but the         case clearly 

generated curves that follow the original object contours with the greatest amount of 

fidelity; the        SRAD case diffused the boundaries too much to be segmented 

accurately. While the WMSAD case did a better job than SRAD        at preserving 

crisp edges, it also retained too much noise and thus produced unusable segmentation 

results. This is once again further elucidated with 3-D renderings of the level set 

segmentation fields, which are provided in Figure 4-21. While offering a significant 

reduction of noise over the original concrete slice image, WMSAD clearly does not 

possess the characteristic smoothness of either SRAD result. 
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4.5.2 Extension to Three Dimensions 

 

For segmenting and denoising the concrete image data set in 3-D, the 2-D slices 

were cropped to have dimensions of         pixels, again for the purpose of saving 

computation time. In addition, only 128 slices were kept out of the original 679, by 

selecting every 5
th

 slice from a set of 640. The result was a cubic image of dimension 

            voxels. SRAD       , SRAD        , and WMSAD Daub4 were 

once again used to denoise the image set and test their capabilities, but this time using 3-

D versions of each.  

Figure 4-22 (a) shows an example slice (45 of 128) before processing, with Figure 

4-22 (b-d) showing the different segmentation results for the same slice. Immediately 

notable is the fact that SRAD appears to have become considerably more diffusive with 

the addition of gradient information in the z-direction (image slice normal direction); 

with SRAD       , image intensity has become sufficiently diffused to eliminate most 

of the edges delineating objects from their surroundings, making the objects 

unrecognizable. SRAD         still performs well, but with perhaps less fidelity than 

in the 2-D case. WMSAD seems to yield much better results when applied to a 3-D 

volume compared with its 2-D performance, but still lacks in boundary smoothness in the 

segment. 

Figure 4-23 (b-d) shows the final 3-D segmentation result in its entirety for each 

of the three test cases, with Figure 4-23 (a) illustrating isosurfaces in the original 

unprocessed image set. The axes have been limited to range from 20 to 100 in each 

direction for visual clarity. SRAD with        is clearly much too diffuse to be usable 

in this particular image set, with SRAD         and WMSAD giving the best results 
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qualitatively. WMSAD actually appears to give superior results with respect to keeping 

all of the imaged objects separate from each other – SRAD with         has allowed 

some object surfaces to merge – but still requires additional smoothing to make it 

amenable to modeling. 

4.5.3 Ultrasound Images 

 

Ultrasound imaging holds a great deal of promise for image-based modeling, as 

ultrasound machines are portable, they do not emit radiation, and they possess the ability 

to rapidly acquire data in real time. Unfortunately, the images they produce are also of 

low visual quality compared to other modalities, and so denoising becomes an especially 

important challenge. Still, they may hold the key to 4-D modeling in the near term. 

Therefore, as a final test of the methods discussed herein, an ultrasound image was 

acquired from Philips’ online library of ultrasound images, and denoised with SRAD and 

WMSAD prior to segmentation. The ultrasound test image chosen is of a normal adult 

liver, and is illustrated in Figure 4-24.   

Figure 4-25 shows the denoising and segmentation results, with SRAD results in 

Figure 4-25 (a) and (b), and WMSAD results in Figure 4-25 (c) and (d). The best SRAD 

result on this sonograph was obtained by setting       , even though this relatively 

high value for the speckle coefficient proved to effect too much diffusion on the CT 

images examined previously. This could be partly due to the fact that the CT images 

actually do not contain speckle, but rather are dominated by additive Gaussian noise. 

Ultrasound images, on the other hand, contain fully developed speckle noise. The liver 

sonograph in particular features objects of interest that have low intensity values, so their 
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edges were well preserved while rapid diffusion toward homogeneity occurred elsewhere. 

While some of the smaller features were diffused out of the image and thus missed by the 

segmentation algorithm, the large containing vessel that features prominently in the 

sonograph was essentially unaltered. Figure 4-26 illustrates the human liver along with 

some of its vascular and biliary structures. Examining this figure, it appears likely that the 

less prominent dark regions in the sonograph correspond to cross-sectional views of other 

vessels oriented at least partially out-of-plane; such structures may be retained in a 3-D 

sonograph with the introduction of gradient and curvature terms in the third direction. 

As with other cases, WBAD with a Daubechies-4 wavelet did denoise the image 

considerably, and perhaps gave results superior to those given by SRAD from a pure 

human visualization standpoint, but its level of noise removal was not sufficient to be 

useful for segmentation purposes. 

4.6 Conclusions 

 

A variety of segmentation and denoising techniques were discussed, each 

possessing their own advantages within the field of image analysis. The rapid k-means 

segmentation approach outlined by Gibou and Fedkiw (modified with cell cuts to give 

smooth contours) was adopted for this work because of its computational efficiency and 

reliability on smooth image fields; we were able to get consistently good results for each 

of the test cases investigated, and quickly. However, it should be kept in mind that 

neglecting the regularization terms in the full evolution equations of Vese and Chan may 

have been partially responsible for this method’s lack of performance on noisy images, 

thus causing it to rely heavily upon the success of preprocessing algorithms. 
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For the purposes of image-based modeling, that is, the ability to generate usable 

segments from noisy images, the Speckle Reducing Anisotropic Diffusion methods of Yu 

and Acton in 2-D, and of Acton et al. in 3-D, proved to be the most consistently reliable 

from the standpoint of producing segmentable images that could easily be used as 

modeling bases. However, wavelet-based methods still hold a great deal of promise and 

deserve further investigation, especially in light of the 3-D concrete results discussed in 

the previous section. For instance, only Daubechies wavelets were considered in this 

work; other wavelet types may be better suited to the task of image noise removal, 

especially where smooth boundaries without speckle are desired. Filtering wavelet 

coefficients at different scales was also considered only briefly, so much future work still 

remains in that regard. 

With denoising and smooth segmentation facilities established, the focus of our 

attention now turns to embedding the results of these facilities into a computational 

domain for modeling purposes. Segmentation simply defines contours; the next order of 

business is to go one step further and quantify how those contours are behaving, so that 

we may define a complete set of boundary conditions. For this, we turn to optical flow, 

the subject of the next two chapters.  
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Figure 4-1. ―Shapes‖ test image (A), and a 3-D rendering of it (B). The intensity scale in 

(B) is reversed for visual clarity. 

  

A B 
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Figure 4-2. Segmentation of the Shapes image (A) is performed by initializing an 

arbitrary level set field in the image space (B), and evolving it (C) until the 

features of interest are segmented (D). (Zero-levels are shown for clarity.) 

Segmentation was achieved in 24 adaptive pseudo time steps for illustration 

here, but in reality, the method requires very few (1-3) steps of arbitrary size. 

Ω1 

Ω2 

Ω1 Ω1 

Ω1 

Ω1 

Ω1 Ω2 

A B 

C D 
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Figure 4-3. 3D representation of the k-Means segmentation process: (A) Initial level set; 

(B) level set after evolving for 10 pseudo time steps; (C) after 15 pseudo time 

steps; (D) after 24 pseudo time steps, with segmentation complete. (Zero-

levels are illustrated with a white line for clarity.) Time step size was adapted 

based on maximum rate of change of the level set field, with     (    ). In 

reality, segmentation can be achieved in very few (1-3) pseudo time steps, 

with arbitrarily large time step sizes. 

  

A B 

C D 
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Figure 4-4. After segmentation, a narrow band level set field is constructed about the 

segmentation curve (zero-level). Inside the narrow band, the level set function 

is a signed distance function extending 6 units length from either side of the 

interface. The rest of the field outside the narrow band is assigned a value of 

+/- 6 depending on which side of the interface it lies on. 
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Figure 4-5. ―Shapes‖ test image represented as level sets using the method of Gibou and 

Fedkiw (level set axes reversed for visual clarity): (A)              ; (B) 

             ; (C)              . Given the idealized contrast in the 

test image, all three cases lead to the same segmentation result (D). 

  

A B 

C 
D 
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Figure 4-6. Gaussian white noise was added to two test images in order to evaluate the 

effectiveness of various denoising methods: (A) ―Shapes,‖ a set of simple test 

shapes composed of grey values 127 and 195 created specifically for this 

work; (B) ―Lena‖ standard test image; (C) Shapes with noise     , 

         ; (D) Lena with noise     ,          ; (E) Shapes with 

noise      ,          ; (F) Lena with noise      ,          .  

A B 

C D 

E F 



www.manaraa.com

216 
 

 

Figure 4-7. ―Cone of Influence,‖ taken directly from [73]. 
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Figure 4-8. Segmenting the noisy Shapes image is not possible without pre-processing: 

Segmentation result for (A)      and (B)      . 

  

A B 
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Figure 4-9. 3-D rendering of brightness intensity in the noisy Shapes test image clearly 

illustrates the difficulty that noise presents to level-based segmentation 

methods (    ).  
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Figure 4-10. Test images smoothed using SRAD with       ,             : (A) 

    ,          ; (B)     ,          ; (C)      ,      
    ; (D)      ,          .  

A B 

C D 
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Figure 4-11. 3-D rendering of Test images smoothed using SRAD with       , 

            : (A)     ,          ; (B)      ,          . 

  

A B 
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Figure 4-12. Test images smoothed using SRAD with        ,             : (A) 

    ,          ; (B)     ,          ; (C)      ,      
    ; (D)      ,          . 

  

A B 

C D 
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Figure 4-13. Test images smoothed using anisotropic diffusion; noise      and 

            : (A)     ,          ; (B)     ,          ; (C) 

     ,          ; (D)      ,          . 

  

A B 

C D 
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Figure 4-14. Test images smoothed using WMSAD: (A) Daub4,     ,          ; 

(B) Daub4,     ,          ; (C) Daub20,     ,          ; (D) 

Daub20,     ,          ; (E) Daub4,      ,          ; (F) 

Daub4,      ,          .  

A B 

C D 

E F 
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Figure 4-15. Segmentation of shapes test image after applying various denoising methods: (A) 

SRAD with       ,     ,          ; (B) SRAD with       ,      , 

         ; (C) SRAD with        ,     ,           ; (D) SRAD with 

       ,      ,          ; (E) RAD with     ,      ,      
    ; (F) RAD with      ,      ,          ; (G) Daub4 WMSAD with 

    ,          ; (H) Daub20 WMSAD with     ,          . 

A B 

C D 

E F 

G H 
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Figure 4-16. 3-D rendering of the level set field lends insight into segmentation 

effectiveness:     : (A) SRAD with       ,     ; (B) SRAD with 

      ,      ; (C) WMSAD Daub4,     ; (D) WMSAD Daub20, 

    . 

  

A B 

C D 
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Figure 4-17. SRAD (A) improves upon the original anisotropic diffusion method (B) by 

increasing contrast and eliminating outlying noise ―speckles.‖ (Shapes test 

image,     .) 

  

A B 
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Figure 4-18. CT slice of a concrete sample. Original image dimensions         in 

    slices. 
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Figure 4-19. Section of concrete image slice, cropped for processing: (A) Original image; 

(B) SRAD with       ; (C) SRAD with        ; (D) WMSAD Daub4. 

  

A B 

C D 
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Figure 4-20. Concrete segmentation results, overlaid on the original image slice for visual 

clarity: (A) Original image; (B) SRAD with       ; (C) SRAD with 

       ; (D) WMSAD Daub4. 

  

A B 

C D 
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Figure 4-21. 3-D rendering of concrete image slice sections: (A) Original image; (B) 

SRAD with       ; (C) SRAD with        ; (D) WMSAD Daub4. 

  

A B 

C D 
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Figure 4-22. Single slice (45 of 128) of the 3-D concrete data set: (A) original image; (B) 

segmented surface after denoising with 3DSRAD,       ; (C) segmented 

surface after denoising with 3DSRAD,        ; (D) segmented surface 

after denoising with WMSAD, Daub4 wavelets. 

  

A B 

C D 
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Figure 4-23. 3-D concrete data set: (A) original image, isocontours of grey level 70; (B) 

segmented surface after denoising with 3DSRAD,       ; (C) segmented 

surface after denoising with 3DSRAD,        ; (D) segmented surface 

after denoising with WMSAD, Daub4 wavelets. 

  

A B 

C D 
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Figure 4-24. Ultrasound image of the liver, from the Philips ultrasound web site at 

http://www3.medical.philips.com/en-

us/secure/images_site/largeImage.asp?size=blowup&classcode=03&appcode=

a&imagename=0084-HD11-C5-2-ABD&systemcode=c&div=ultra. 
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Figure 4-25. Denoised image and segmentation results for a cropped section of the 

Philips ultrasound liver image: (A, B) SRAD,       ; (C, D) WMSAD, 

Daub4 wavelets. 

A B 

C D 
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Figure 4-26. Screenshot of liver anatomy taken from 

http://pie.med.utoronto.ca/VLiver/VLiver_content/VLiver_interactiveLiver.ht

ml. 
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CHAPTER 5 

TOWARD TRULY EULERIAN IMAGE BASED MODELING 

5.1 Introduction 

 

A recurring theme in this work has been the difficulty involved with meshing the 

surfaces of complex moving boundaries in a Lagrangian sense.  Meanwhile, the whole 

point of the image-based modeling framework being developed in this thesis is to greatly 

simplify the process of creating complex moving geometries in fluid flow calculations.  

While the algorithm laid out in Chapter 3 was shown to succeed in enabling accurate 

representation of complex motions that would be difficult or nearly impossible to define 

functionally, particularly in the case of modeling duodenal peristaltic contractions, it still 

falls short of attaining the desired level of simplicity. 

The method outlined in Chapter 3 employed a modified rapid k-means method to 

create a binary segmentation field for object tracking, which was stepwise in nature.  

Because pixels could only take on one of two possible values with this approach, the 

interface between an object and its surroundings was necessarily stepwise as well, 

disallowing for smooth segmentation contours.  Most importantly, there existed no 

mechanism for calculating the velocity of an object with this binary representation.  Thus, 

object interfaces had to be populated with Lagrangian points in order to provide a 

complete surface description so that boundary conditions could be assigned to imaged 

objects. Points were necessary because they provided a set of physical addresses that 

could be used for interface smoothing and, combined with knowledge of the elapsed time 

between image frames, allowed for the construction of interface velocities.  Of course, 
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the one-to-one point correspondence required for velocity calculations was in general not 

given directly when populating the binary segmentation field; an identical number of 

interfacial pixels were not usually found upon segmentation from one frame to the next, 

and so further manipulation had to proceed in order to ensure that there were an equal 

number of surface points between image frames being considered, and that the points 

were equally spaced to avoid unphysical jumps in velocity or lack of grid connectivity 

with the underlying modeling mesh.   

The tedium involved with these point population and smoothing operations, 

combined with a lack of generality in surface detection, impelled the development of a 

more robust and reliable method that does not rely on surface point tracking. The flow 

solver and level set methods used in our CFD code operate in an Eulerian sense on a 

fixed Cartesian mesh, and so it seemed most natural to segment images for the purpose of 

obtaining level set boundaries in the same way.  In essence, we desired to develop a 

method which can directly generate Eulerian level set fields on a series of images so that 

the resultant level sets may be employed in supplying boundary conditions straight away, 

without the need for any intermediate Lagrangian steps.   

The denoising and improved segmentation developments outlined in Chapter 4 

were important first steps away from the Lagrangian method, as they gave us the ability 

to generate smooth contours of imaged objects without the use of points. However, this 

leaves us without the information that was afforded by those points – the ability to predict 

intermediate positions of interfaces between image frame (fiducial) time steps so that the 

imaged object may be allowed to evolve with the temporal resolution demanded by the 
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flow solver, and the ability to set boundary conditions using one-to-one correspondence 

and knowledge of point displacements through a series of passing image frames. 

One promising way of supplying the information previously supplied through the 

use of Lagrangian point tracking lies with a paradigm known as optical flow. Optical 

flow was first invented for the purpose of tracking objects in the context of computer 

vision, and as such offers a mechanism for generating velocity vector fields that describe 

motions in an imaged scene.  It is essentially an Eulerian representation of movement as 

it is perceived visually, lending a global perspective that fits well with present goals 

aimed toward simplicity and seamless integration with the established Cartesian flow 

solver code.  Recent developments in optical flow and its use in conjunction with active 

contour segmentation techniques make it attractive as a potential means for 

accomplishing the goals of this thesis project, namely, enabling a completely Eulerian 

representation of complex moving geometries and their interaction with surrounding fluid 

media without the need for any information about modeled objects outside of how they 

appear visually.  A literature survey describing the evolution of the field of optical flow is 

given as background in the following sections. 

5.2 The Origins of Optical Flow 

 

Optical flow has been an active area of research in the field of computer vision 

since it was first introduced by Berthold Horn and Brian Schunck in 1981.  In their 

seminal publication Determining Optical Flow, Horn and Schunck define optical flow as 

a distribution of apparent velocities of the movements of brightness patterns in an image, 

and put forth a novel means for computing it.  The term ―brightness pattern‖ is 
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synonymous with the distribution of irradiance intensity in an image, and is defined as 

 (   ), where   0
 
 1 in a 2-D image sequence [15].   

The purpose of optical flow is to provide information about the rate of change of 

the spatial arrangement of objects that appear in a series of image frames.  As an 

extension to already existing edge detection methods, Horn and Schunck made the 

portentous realization that discontinuities in an optical flow field could be useful in 

marking segmentation boundaries, and thus could help identify the locations and the 

movements of objects in a scene simultaneously [15].  Because optical flow is a paradigm 

based upon visual perception, they made several assumptions that match what we already 

intuitively know about our own vision: 

i) The apparent velocity of brightness patterns can be directly identified with 

surface motions of objects in an image scene, however, an apparent velocity 

exists only if it can be detected visually.  As a counterexample, a perfect 

uniform cylinder rotating about its axis viewed from a fixed location with a 

fixed light source will not have any apparent velocity, because there is nothing 

visually indicating that it is in fact a moving object.  Thus, optical flow is 

limited to detecting changes in scale and position of regions of pixels relative 

to each other. 

ii) The surface being imaged is considered to be a flat object, i.e. variations in 

brightness caused by shading effects are ignored.  This simply means that 3-D 

objects become 2-D projections when imaged, which is again visually 

intuitive. 
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iii) Incident illumination is uniform across a surface, such that brightness is 

proportional solely to the reflectance of the surface at the corresponding point 

on an object:  

  (   )   (   ).    (5.1) 

This is really just an extension of assumption (ii), stating that the light source 

remains fixed in the 2-D projection being considered. 

iv) Reflectance varies smoothly and has no spatial discontinuities.  Thus, image 

brightness is differentiable. 

These assumptions (i) through (iv) lead to the first of two modeling constraints imposed 

by Horn and Schunck in generating an optical flow field: the brightness of any material 

object in the image is constant, so that 

 
  

  
  .  (5.2) 

From an Eulerian perspective, this is written as 

 
  

  

  

  
 

  

  

  

  
 

  

  
  .  (5.3) 

If we let 
  

  
   and 

  

  
   be components of velocity, then   0

 
 
1 and Equation 5.3 

can be re-written as  

 
  

  
       . (5.4) 

Alternatively, Equation 5.3 can be written as  

             , (5.5) 

where any subscript ( ) denotes 
 

  
 [15].  This will be the notation used for the duration of 

the chapter. 



www.manaraa.com

241 
 

Because intensity is a scalar value measured locally in each pixel comprising an 

image, another constraint is needed in order to provide an optical flow velocity, which of 

course has two components in a 2-D image sequence.  Horn and Schunck note that 

Equations 5.3 through 5.5 provide the component of motion in the direction of the image 

intensity gradient (which is   
  

√  
    

  
 by inspection), but the component of optical flow 

velocity tangent to the intensity gradient cannot be found without a second constraint 

[15].  To provide the missing information, then, they make the additional assumption that 

objects in an image will always undergo continuous deformation or rigid body motion, 

and therefore that adjacent object regions must have similar velocities; the image 

intensity velocity field must vary smoothly everywhere except at object boundaries, 

where there can be discontinuities.  This introduces a smoothness constraint, the second 

constraint needed to construct a 2-component velocity field, which is proposed to be 

accomplished by minimizing the magnitude of the gradient of the optical flow field 

velocity √       √.
  

  
/
 

 .
  

  
/
 

 .
  

  
/
 

 .
  

  
/
 

 [15]. 

The overall aim is to approximately satisfy the constraints by minimizing 

simultaneously [15]: 

a) the sum of the errors in image brightness 

               (5.6) 

b) the departure from flow field smoothness 

   
  .

  

  
/
 

 .
  

  
/
 

 .
  

  
/
 

 .
  

  
/
 

 (5.7) 

Minimizing these two error equations together is necessary and sufficient to obtain a 

complete flow field [15].   
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A weighting factor    is defined for the purpose of deciding the relative 

importance of errors in velocity values and field smoothness.  Since it is desired to 

determine the optical flow field over the entire image domain, the problem is posed as an 

integral functional, which represents a total error, or energy, to be minimized: 

    ∬     , (5.8) 

where 

       
    

 . (5.9) 

Thus, the goal here is to find a mapping         that minimizes the energy E
2
 

characterizing image space     .   

This type of minimization problem belongs to the Calculus of Variations, and the 

mapping   is given by the solution to a pair of Euler-Lagrange equations [15, 75-76] 

(Appendix A):   

   (          )          (5.10) 

   (          )          (5.11) 

Horn and Schunck used 3-D forward differencing throughout their numerical 

formulation to estimate spatial and temporal derivatives (Appendix B), arguing that they 

have found formulae with larger support to give equivalent results when applied to 

smooth images.  Of course, if the image is not smooth, it may be useful to apply higher-

order discretizations, possibly even central differencing, so that noisy pixels and other 

spurious discontinuities may not be so amplified in their effect.  Laplacians of flow 

velocities were estimated as (Figure 5-1) 

      ̅             (5.12) 

      ̅            , (5.13) 



www.manaraa.com

243 
 

where  ̅ and  ̅ are local average velocity components, defined in Appendix B. 

Introducing the Horn and Schunck approximation for the Laplacians in Equations 

5.12 and 5.13 gives the equations 

   (          )    (   ̅)    (5.14) 

   (          )    (   ̅)   , (5.15) 

which, cast in terms of the optical flow field components, become (Appendix C) 

    ̅    (   ̅     ̅    ) ( 
    

    
 ) (5.16) 

    ̅    (   ̅     ̅    ) ( 
    

    
 ). (5.17) 

In this first work, the equations for u and v are iteratively solved explicitly: 

       ̅    (   ̅
     ̅

    ) ( 
    

    
 ) (5.18) 

       ̅    (   ̅
     ̅

    ) ( 
    

    
 ) (5.19) 

The total number of iterations niter required for convergence of Equations 5.18 and 5.19 is 

determined by the size of the image domain [15].  In regions of the image where the 

gradient    is small, such as a group of pixels representing the body of an object in the 

domain, local optical flow velocity estimates will simply be the average of the 

neighboring velocity estimates; Horn and Schunck note that velocity information will 

propagate inwards from object boundaries, in a manner analogous to the evolution of the 

heat rate equation where change in temperature is proportional to the Laplacian.  Thus, it 

is recommended to set niter,max to the maximum side length of the image pixel grid as a 

conservative estimate that allows information to propagate fully through the image field 

[15]. 

              (                 ) (5.20) 
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One of the benefits of a variational formulation is that natural boundary 

conditions are always intrinsically supplied by the imposed variational displacement [76].  

Horn and Schunck point out that the natural boundary conditions for their formulation 

turn out to be homogeneous Neumann conditions (zero normal derivatives), and so 

boundary pixels may be treated simply by copying their values to a layer of pixels 

padding the original image domain. 

In [15], no guidance is given with regard to setting the relative weighting    

between brightness constancy and smoothness constraints.  However, a 2008 paper by 

Jhunjhunwala and Rajagopalan titled Optical Flow based Volumetric Spatio-Temporal 

Interpolation offers as its primary contribution a means of estimating a value for   that (it 

is hoped) will prevent the problem from becoming over- or under-constrained.  

Empirically, Jhunjhunwala and Rajagopalan found that the best results were achieved on 

their test images by setting   equal to the gradient magnitude calculated at a given pixel, 

for every pixel in the domain [16]. 

    ‖   ‖ (5.21) 

Overall, the variational formulation proposed in this first optical flow publication 

by Horn and Schunck was found by them to work nicely for smooth sample images, but 

suffered large errors near discontinuities in some of the test images analyzed.  In terms of 

this thesis project, that is a rather unfortunate consequence because the primary goal in 

making use of the optical flow method is to effectively model moving boundaries with 

accurate velocity conditions in a sharp fashion using level sets.  As it turns out, however, 

the field of optical flow has progressed considerably since 1981, in a direction favorable 

to present developments. 
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5.3 Combining Optical Flow with Active Contours 

 

In a 2004 article titled Active Contours and Optical Flow for Automatic Tracking 

of Flying Vehicles, the authors (Ha et al.) employ the optical flow formulation of Horn 

and Schunck as a means for determining where to initialize active segmentation contours 

so that target object interfaces may be found and revealed more quickly and reliably [14].  

The optical flow velocity field of an image sequence is used for contour initialization on 

each image frame supplied, and then the contour is evolved from this predicted position 

until a suitable segmentation is achieved. 

Active contours are defined in [14] as deformable continuity splines which are 

generally evolved by energy minimization methods under the influence of image-

dependent forces, internal forces, and user-defined constraints.  Ha et al. propose a level 

set active contour evolution approach based on  

i) Euclidean curve shortening: A gradient direction is defined in which a given 

curve shrinks as rapidly as possible relative to Euclidean arc length. 

ii) Theory of conformal metrics: Euclidian arc length is multiplied by a 

conformal factor that is defined by features to be extracted, i.e. regions of high 

gradient, then the corresponding gradient evolution equations are computed. 

Casting the image domain in this framework generates a potential well at the 

bottom of which lie features of interest to be extracted.  The initial contour then simply 

flows into the well as it evolves, and segmentation is complete [14]. 

They start with a level set formulation of a Euclidian curve-shortening equation 

 
  

  
  (   )‖  ‖ 0  

  

‖  ‖
  1, (5.22) 
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where φ is a level set field, 
  

‖  ‖
 is the outward unit normal n to a given level set contour, 

and the divergence of the normal     defines contour curvature κ.  The term ν is a so-

called ―inflation‖ term defined to keep the level set contours flowing in the proper 

direction [14].   

 (   ) is a ―stopping term,‖ included to prevent curve evolution from continuing forth in 

regions where an edge is detected, hopefully resulting in the contour ceasing motion once 

the boundaries of an object are segmented.  Thus, it is desirable for   to be small near 

edges.  A common definition for   in image processing is 

  (   )  (  ‖   (   )   (   )‖ )  , (5.23) 

where    is a 2D Gaussian smoothing filter, based on some tunable parameter σ, that is 

convoluted with pixel intensity (Equation 5.23) [14]. 

   (   )         |     |    (5.24) 

For a typical curve   , ( )  ( )-  parameterized by some parameter p, arc 

length is given by 

    √  
       , (5.25) 

where subscripts denote derivatives in p in the usual convention defined earlier in this 

chapter.  Ha et al. define a new arc length function dependent upon  (   ), so that the 

curve shortening portion of the level set formulation ‖  ‖  will be dependent upon a 

new metric     (Equation 5.26) which becomes small near edges.   

     √  
         (5.26) 

In other words, the initialized level set curve is designed to shrink most quickly where it 

is desired to, in uniform regions of the image space, while evolving slowly or completely 

ceasing to shrink where there exists an edge to be segmented. 
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At this point, the authors introduce an artificial time parameter t to evolve curve 

  , (   )  (   )-  according to a length function 

   ( )  ∫ ‖
  

  
‖    

 

 
. (5.27) 

The first variation of Equation 5.27 leads to [17] 

    ( )   ∫ 〈
  

  
    ̂  (    ̂) ̂〉

  ( )

 
  . (5.28) 

Since    ( ) is a scalar and the integrand is composed of the inner product of vectors, it 

follows that the inner product is simply a dot product (projection) of the two vectors, 

which is clearly maximal when they lie in the same direction.  Thus, the curve perimeter 

   shrinks most rapidly when 
  

  
 ,   (    ̂)- ̂.  Casting this relationship in a 

level set framework yields 

 
  

  
  ‖  ‖ 0  

  

‖  ‖
1       , (5.29) 

and adding the constant inflation term as before gives the complete level set curve 

evolution formulation [14] 

 
  

  
  ‖  ‖ 0  

  

‖  ‖
  1       . (5.30) 

In this context, optical flow is utilized solely to provide information about where 

to initialize the segmentation curve, and so must precede level set contour evolution.  Ha 

et al. use directly the formulation of Horn and Schunck, applying central differencing 

(Appendix D) for spatial derivatives in the image domain and one-sided differencing 

between image frames.  An explicit gradient descent method was chosen as their iteration 

scheme to solve for velocities u and v: 

  ̃     ̃   [  (   
     

    )       ] (5.31) 

  ̃     ̃   [  (   
     

    )       ]. (5.32) 
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In Equations 5.31 and 5.32, γ is a perturbation parameter that is tuned based on the image 

sequence at hand, and is referenced elsewhere in [14] without supplying further details.   

Because their work was directed toward real-time image-based tracking of flying 

vehicles, the primary aim was to maximize computational efficiency.  Thus, the authors 

of [14] made another important contribution by casting the optical flow methodology in a 

multigrid framework.  Multigrid methods essentially increase the speed at which matrix 

solutions can be found by first solving a given set of equations on a coarse mesh, then 

using this coarse mesh solution as the initial guess on a finer mesh, and so on recursively 

until a solution to the original dense problem is realized (Appendix E).  This approach 

also carries with it the distinct advantage of being more likely to find global minima of 

elliptic equations on the coarse level, reducing the likelihood of a solution being 

―trapped‖ in a local minimum when solved strictly on the original dense mesh [12, 14].  

Ha et al. found that convergence sped up by an order of magnitude by employing 

multiple grids in this way. 

5.4 Preserving Nonlinearity: Improving the Ability to Track 

Discontinuities 

 

A notable breakthrough was made in 2004 when Brox et al. reported in High 

Accuracy Optical Flow Estimation Based on a Theory for Warping that a significant 

contribution was possible in the field with the realization that the multigrid approach 

offered earlier facilitates the preservation of nonlinearity in the energy functional to be 

minimized.  All works up to this point utilized the optical flow brightness constraint 

originally derived by Horn and Schunck, which was always linearized by the assumption 
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that (     ) is known, and leads to a fixed point iteration on (   ).  In Brox et al., 

however, it is noted that linearization is only valid if an image changes linearly along a 

displacement, which is generally not the case.  The validity of this assumption becomes 

particularly tenuous if displacements are large [12].  Thus, grey value constancy is 

assumed as in previous works, but left in the form 

  (     )   (           ) (5.33) 

for         .   

If   ,     -  and   ,     - , then 5.33 can be written more compactly as 

[9] 

  ( )   (   ). (5.34) 

This is an important distinction from simply writing 
  

  
  , which leads to the previous 

linear formulations of the minimization problem. 

In addition to assuming brightness constancy, Brox et al. introduce an additional 

gradient constancy assumption which states that the relative brightness of an object and 

its surroundings stays the same regardless of an object’s location or the time at which it is 

being viewed, effectively reducing sensitivity to overall changes in image brightness 

[12]: 

   ( )    (   ). (5.35) 

With the new constraint imposed on the optical flow field, the brightness error is changed 

from the standard Horn and Schunck formulation to 

   
  | (   )   ( )|   |  (   )    ( )| , (5.36) 

where   is a relative weighting between brightness constancy and brightness gradient 

constancy. 
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To further reduce sensitivity to violations of the brightness constancy assumption, 

Equation 5.36 is tempered with an increasing concave function in order to lessen the 

impact of outliers in the image domain.  Based on work by Black and Anandan [10], 

Brox et al. chose to achieve this sensitivity reduction using a modified L
1
 norm function 

 (  )  √     , where   is some small value that prevents problems associated with a 

machine’s attempt to numerically approximate the square root of zero (set to      in 

their work):   

   
   (| (   )   ( )|   |  (   )    ( )| ). (5.37) 

In this way,   
  cannot vary linearly about noisy outlier pixels, but varies less abruptly as 

the square root of its original value. 

The smoothness constraint is also used as in previous works, but is enforced over 

the entire spatio-temporal domain and is modified in the same way as the brightness 

constraint to lessen the unwanted effects of noise: 

   
   (|  |  |  | ). (5.38) 

In Equation 5.38, the divergence operator acts spatially and temporally so that   

[        ].  Introducing the usual regularization coefficient   , the energy functional to 

be minimized takes on the familiar form 

   (   )  ∭(  
      

 )  . (5.39) 

As with the method of Horn and Schunck before, the goal is to find the functions u and v 

that minimize   (   ).  The variational formulation leads to a set of Euler-Lagrange 

equations, which now have the form [12] 

   (  
      

      
 )  [                    ]    

       ,  (|  |  |  | )  -        (5.40) 
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   (  
      

      
 )  [                    ]    

       ,  (|  |  |  | )  -   ,     (5.41) 

where   (  )  
 

 √     
 , and the authors have used the following shorthand for clearer 

representation: 

         (   )       

         (   )       

       (   )   ( )      

           (   )       

           (   )       

           (   )       

          (   )     ( )      

          (   )     ( ).      

This is the point where novelty is introduced: the Euler-Lagrange equations 

defined in this way are nonlinear in w, so nested fixed-point iterations are performed to 

linearize the system in terms of velocities and their incremental changes.  Starting out, if 

   ,       -  with initialization    ,     -  at the coarsest grid level, then      

is the solution of  [12] 

   .,  
   -   ,   

   -   [   
   ]

 
/  [  

   
        

    
        

    
   ]  

       ,  (|     |  |     | )     -     (5.42) 

 

   .,  
   -   ,   

   -   [   
   ]

 
/  [  

   
        

    
        

    
   ]  

       ,  (|     |  |     | )     -   .  (5.43) 
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Once a fixed-point solution in    is reached, the solution grid is refined and the coarse 

grid solution will be used as an initialization at the new scale.   

However,    and   
    remain nonlinear, and thus must first be linearized before a 

solution for the optical flow field may be obtained and used to initialize a refined pixel 

domain.  To accomplish this, 1
st
 order Taylor expansions linearize   

    [12]: 

   
      

    
       

     (5.44) 

    
       

     
        

     (5.45) 

    
       

     
        

    , (5.46) 

where 

             (5.47) 

            . (5.48) 

For shorthand, Brox et al. define 

  (  ) 
     .[  

    
       

    ]
 
     

     [   
     

        
    ]

 
      

     [   
     

        
    ]

 
/     (5.49) 

and  

 (  ) 
     (| (      )|  | (      )| ). (5.50) 

They term Equation 5.49 ―data term robustness‖ and Equation 5.50 ―smoothness 

diffusivity,‖ and with these new shorthand definitions write the Euler-Lagrange equations 

once again as 
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 (  ) 
  {  

 [  
    

       
    ]}      

    (  ) 
 {   

 [   
     

        
    ]     

      
 [   

     
        

    ]}      

       *(  ) 
   (      )+         (5.51) 

 (  ) 
  {  

 [  
    

       
    ]}      

    (  ) 
 {   

 [   
     

        
    ]     

      
 [   

     
        

    ]}      

       *(  ) 
   (      )+   .      (5.52) 

It is noted that this is still a nonlinear system of equations for fixed point k, but now in 

increments of     and     [12].  The remaining nonlinearity in    is removed using a 

second inner fixed point iteration loop over a new step l, where       and       denote the 

variables iterated on, with         and         [12].  Now the Euler-Lagrange 

equations take on their final forms: 

 (  ) 
    {  

 [  
    

           
        ]}     

    (  ) 
   {   

 [   
     

            
        ]    

      
 [   

     
            

        ]}     

       {(  ) 
     (          )}        (5.53) 

 (  ) 
    {  

 [  
    

           
        ]}     

    (  ) 
   {   

 [   
     

            
        ]    

      
 [   

     
            

        ]}     

       {(  ) 
     (          )}   .     (5.54) 
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Applying their method to a set of test images, Brox et al. found the resultant errors in 

their optical flow fields to be up to 5 times smaller than in those of all previous methods 

which do not preserve nonlinearity. 

5.5 Coupling Image Segmentation and Optical Flow 

   

The idea of preserving nonlinearity was clearly a significant contribution to the 

original optical flow formulation.  However, in their 2006 paper Piecewise-Smooth Dense 

Optical Flow via Level Sets, Amiaz and Kiryati report that even the method of Brox et al. 

may potentially fail along strong discontinuities in the optical flow field, i.e. where object 

contours exist [9].  In an attempt to improve upon this situation, they offer yet a further 

advancement of the field, directly coupling optical flow estimation with active contour 

segmentation techniques.   

Unlike the work of Ha et al., in which optical flow was employed as a means for 

initializing segmentation contours with little attention given to the accuracy of the flow 

field itself, Amiaz and Kiryati seek to produce optical flow fields and segmentation 

contours which concertedly act to represent imaged objects and their motion with fidelity.  

To this end, they embed the functional developed by Brox et al. directly with an active 

contour segmentation model.  In this way, the optical flow problem is restated as one of 

determining two piecewise smooth flow fields separated by a contour, simultaneously 

minimizing contour curve length and the optical flow functional within the segregated 

smooth regions [9]. The level set method of Chan and Vese for minimizing the Mumford-

Shah energy functional was ultimately chosen by Amiaz and Kiryati, because of its 

ability to produce sharp interfaces.   
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Recall from Chapter 4, in the section on image segmentation, that Chan and Vese 

reformulated the Mumford-Shah functional  

    ( )  ∫  ( )  
 

  ∫  ( )    | |
   

 (5.55) 

so that it would act on a segmentation field possessing two distinct regions; one inside of 

a segmentation curve (  ) and one outside (  ). The segmentation curve separating the 

two regions represents the zero-level of an evolving level set function φ, 

     ∫ (     )
  ( )  

 
 ∫ (     )

  (  )  
 

    

    ∫ |   |  ( )  
 

  ∫ |   |  (  )  
 

    

    ∫ |  ( )|   
 

,        (5.56) 

( ( ) is the Heaviside function of  , demarcating    and   , and contour length | | is 

now represented equivalently by |  ( )|), and the functional     is minimized by 

iteratively solving the Euler-Lagrange equations for   ,   , and  . With a zero level set 

in place, the formulation of Amiaz and Kiryati follows almost exactly that of Brox et al., 

only now the optical flow field is solved for an image domain that is defined as being 

composed of two neighboring regions.  Two optical flow fields,    ,       - and 

   ,       -, are defined so that the optical flow functional of Brox et al. takes the 

form 

   (             )          

 ∭ (| (    )   ( )|   |  (    )    ( )| ) (  )    

  ∭ (| (    )   ( )|   |  (    )    ( )| ) (   )    

    ∭ (|   |  |   | ) ( )       

    ∭ (|   |  |   | ) (  )       

    ∭|  ( )|  .        (5.57) 
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The Heaviside function is scaled by parameter κ < 1 in order to stress variations in the 

flow near discontinuities.  Following the formulation of Chan and Vese, the relative 

weight between image brightness and smoothness constraints is denoted by   rather than 

  , but the two are in fact equivalent.  

Defining derivatives inside and outside of the zero level set contour, 

     
     (    )       

     
     (    )       

     
   (    )   ( )      

      
      (    )       

      
      (    )       

      
      (    )       

      
     (    )     ( )      

      
     (    )     ( ),     

the data (brightness) constraint equations for    at     and    at     are written as 

  (   )  .  
  

     
  

     
  

/  [  
   

      
    

      
    

 ]   

      , (  )  (|   |  |   | )   -     (5.58) 

  (   )  .  
  

     
  

     
  

/  [  
   

      
    

      
    

 ]   

      , (  )  (|   |  |   | )   -   ,  (5.59) 

and the smoothness constraint equations for    at     and    at     are 

   ,  (|   |  |   | )   -    (5.60) 

   ,  (|   |  |   | )   -   . (5.61) 



www.manaraa.com

257 
 

Linearization and numerical discretization (Appendix F) of these equations leads to the 

discrete two-phase Euler-Lagrange equations for optical flow field velocity: 

 

  (    )(  ) 
      {  

   [  
      

               
            ]}   

     (    )(  ) 
     {   

   [   
       

                
            ]   

     
   [   

       
                

            ]}      

     {  (    )(  ) 
       (              )}       (5.62) 

and 

   (    )(  ) 
      {  

   [  
      

               
            ]}   

      (    )(  ) 
     {   

   [   
       

                
            ]  

      
   [   

       
                

            ]}     

      {  (    )(  ) 
       (              )}   .   (5.63) 

Like the authors of previous works, Amiaz and Kiryati use a gradient descent equation 

for level set evolution: 

 
  

  
    ( )  .

  

|  |
/        

      ( ), (|   |  |   | )   (|   |  |   | )-    

      ( ), (| (    )   ( )|   |  (    )    ( )| )   

    (| (    )   ( )|   |  (    )    ( )| )-,    (5.64) 

or, more concisely, using the brightness and smoothness errors defined by Brox et al., 

 
  

  
    ( )  .

  

|  |
/      

      ( ), (  
 )   (  

 ) -     

     ( ), (  
 )   (  

 ) -.     (5.65) 



www.manaraa.com

258 
 

In Equations 5.64 and 5.65,    is the numerical approximation to the delta function 

 ( )    ( ): 

   ( )     ( )  
 

 

 

     . (5.66) 

Finally, the discrete version of the two-phase level set equation is (Appendix G) 

     
    

 

 
[    

   (        
          

          
          

 )   

        (    
 )  (    

        
   )       

        (     
 )  (    

        
   ).      (5.67) 

The Euler-Lagrange equations for optical flow and the level set evolution 

equations are iteratively solved in alternation to convergence, giving a final two-phase 

optical flow field of  

   {
      
            

   , (5.68) 

separated by a level set isocontour. Thus, in the Amiaz and Kiryati formulation, 

segmentation contours that distinguish the boundaries of moving objects are coupled with 

optical flow results, and those optical flow results are in turn updated with each 

reconfiguration of the segmentation contours in a two-way coupling relationship. 

However, one drawback of maintaining two-way coupling in this manner is that any large 

displacements in an image field from one frame to the next can result in a high 

computational cost, since the optical flow field and the segmentation contours must be 

iteratively evolved together with each new image frame.  
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5.6 Conclusions 

 

Each improvement upon the original methodology of Horn and Schunck has led 

the field of optical flow stepwise toward usefulness as a means of quantifying the 

necessary conditions on moving boundaries for the purpose of performing CFD 

simulations. Arguably the most notable contribution among those surveyed was the 

preservation of nonlinearity introduced by Brox et al., which they showed to be 

considerably more accurate than the original linear method when applied to test images 

with known solutions [12]. 

The two-phase method of Amiaz and Kiryati promises some improvement over 

the single-phase approach of Brox et al., but implementing it requires evolving a 

segmentation contour iteratively over potentially many time steps; we already adopted in 

the previous chapter a smooth version of the rapid k-means approach of Gibou and 

Fedkiw precisely to avoid this incremental level set evolution process, and it 

demonstrated an ability to produce good segmentation results for our purposes (following 

a simplified version of Vese and Chan’s formulation) while only requiring a few 

iterations to reach convergence. For this reason, we have opted for now to retain the 

segmentation methods already in place in our modeling approach, and to use single-phase 

nonlinear optical flow, the method of Brox et al., as a means for setting boundary 

conditions on segmentation contours in an Eulerian sense, obviating the need for the 

previous point tracking method and its associated assumptions and tedium. 

Interestingly, nobody has yet incorporated the optical flow and segmentation 

methods described here into a complete framework for constructing CFD models.  Thus, 

the adaptation of optical flow to this context stands as a novel development in the way of 
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enabling on-the-fly quantification of complex moving boundaries and their influence on a 

surrounding fluid environment. In the next chapter, the development and testing of 

optical flow algorithms is discussed, first using a series of test images, and then finally 

with some real images of interest to modeling. 
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Figure 5-1. Visual representation of the Laplacian approximation [15].  
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CHAPTER 6 

DEVELOPMENT, TESTING, AND APPLICATION OF OPTICAL 

FLOW 

6.1 Introduction 

 

In the previous chapter, optical flow was introduced as a method of tracking the 

motions of brightness patterns between image frames. Horn and Schunck [15] introduced 

the method in 1981, proposing image brightness as a conserved quantity in a moving 

image field. By placing a second constraint of smoothness on image pattern motion, they 

formulated a functional which, when minimized, leads to a set of coupled, linear Euler-

Lagrange equations. 

In 2004, Brox et al. improved upon Horn and Schunck’s optical flow method by 

preserving nonlinearity in their formulation and introducing the gradient of image 

brightness as a quantity to be conserved along with the brightness, itself [12]. The result 

was a new pair of coupled, nonlinear equations that must be solved using nested fixed-

point iteration schemes as described in Chapter 5.  

In our ongoing effort to move away from the use of Lagrangian points in image 

based models, a complete optical flow package has been developed, including both the 

Horn-Schunck formulation (developed as a basis for comparison, and because of its 

continued persistence in the modern literature) and that of Brox et al. (developed because 

of its promise of marked improvement over linear formulations). This chapter outlines 

the development process, and is organized into five distinct sections: Section 6.2 briefly 

discusses the development of the optical flow algorithms, themselves. Section 6.3 covers 
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optical flow testing, in which both the methods of Horn and Schunck and of Brox et al. 

were thoroughly evaluated by applying them to a set of synthetically generated test 

images. Section 6.4 moves toward application of optical flow to real image sequences, 

where the swimming American eel video is used to demonstrate the abilities of each 

optical flow method. Section 6.5 also applies optical flow to a video sequence, but this 

time it is one that captures red blood cells flowing through an experimental channel 

setup, so that optical flow is demonstrated on a set of image frames featuring many small 

objects rather than one large object (as has been the case up to now, i.e. the eel video). 

Finally, Section 6.6 applies the optical flow method once again to images of small 

particles, but now within the context of PIV image pairs, acting as a gauge of 

performance in situations where imaged objects are very small—on the order of a couple 

pixels—and the intensity gradients are quite high. 

6.2 Development of the Algorithms 

 

A complete optical flow code was written in Fortran 90, and included the option 

of solving the optical flow field using either the linear formulation of Horn and Schunck 

or the nonlinear method of Brox et al. so that the two could be easily compared. The 

discretized Horn and Schunck equations were modified somewhat, so that they could be 

left in matrix form and solved using the same successive over-relaxation algorithm 

employed in solving the nonlinear equations. Rather than estimating Laplacians as 

      ̅    (6.1) 

and 

      ̅    (6.2) 
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with  ̅ and  ̅ representing velocity components averaged over the 9-point stencil 

suggested by Horn and Schunck and supplied in the previous chapter’s Figure 5-1, a 

standard 5-point stencil was used (which, curiously, turned out to give better results than 

the original formulation). So the Laplacians of velocity are now estimated as 

                     (6.3) 

and 

                    , (6.4) 

with        and   subscripts indicating pixel-center values in the four cardinal 

directions, and subscript   denoting the pixel-center value being solved for. Rewriting 

the Horn and Schunck equations (Equations 5.10 and 5.11 in the previous chapter) in 

terms of  -velocity for the first one and  -velocity for the second one, 

         
     (      ) (6.5) 

         
     (      ), (6.6) 

and using the Laplacian estimates given by Equations 6.3 and 6.4 leads to the new set of 

coupled Euler-Lagrange equations 

             .  
  
 

  /    
  

  (       ) (6.7) 

and 

             .  
  
 

  /    
  

  
(       ). (6.8) 

These optical flow equations are now cast in a convenient form to be solved using point 

successive over-relaxation (PSOR): 

   
    (   )  

  
 

  
(      

      
      

        
   ) (6.9) 

   
    (   )  

  
 

  
(      

      
      

        
   ). (6.10) 
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Here,   is an over-relaxation parameter to help speed up convergence (set to 1.99 for all 

cases in this thesis) and neighbor coefficient matrix entries        . In the  -

velocity equation (Equation 6.9),         
     and   (    

 )(    
    ), while 

the  -velocity equation (Equation 6.10) has         
     and   (   

  )(    
      ). 

 Obviously, the nonlinear optical flow equations of Brox et al. are considerably 

more complicated, but they are still set up in exactly the same way. Recall from Chapter 

5 that the Euler-Lagrange equation for incremental  -velocity update    was 

(  ) 
   

   {  
 [  

    
           

        ]}     

    (  ) 
   {   

 [   
     

            
        ]    

      
 [   

     
            

        ]}     

     {(  ) 
     (          )}.      (6.11) 

We can rewrite the divergence term in discrete form as 
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     (          )}  (  )   

   [(  
     

       )  (  
     

       )]   

 (  )   
   [(  

     
       )  (  

     
       )]    

 (  )   
   [(  

     
       )  (  

     
       )]    

 (  )   
   [(  

     
       )  (  

     
       )],      (6.12) 

where uppercase letter subscripts are pixel center values and lowercase letter subscripts 

are pixel face values in the four cardinal directions. This then allows the Euler-Lagrange 

equation for    to be written in PSOR form as 

   
        (   )   

      
 

  
,    

   (  
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www.manaraa.com

266 
 

   
   (  

    
     

     )    
   (  

    
     

     )    

   
   (  

    
     

       )    
   (  

    
     

       ), (6.13) 

with 

   (  )   
   

,       

   (  )   
   

,       

   (  )   
   

,       

   (  )   
   

,      

               
(  )

   

   

  [  
   (   

     
 )],    

and   

   
(  )

   

   

  {  (     
        )   [   (      

         )     (      
         )]}. 

The PSOR equation for    follows similarly, with  

               
(  )
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 )]    
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 {  (     
          )   [   (      

           )     (      
           )]}.  

Intensity derivatives are computed using a central difference scheme, with one-sided 

differencing applied at domain boundaries (Appendix H). 

 Including the PSOR solver, the method of Brox et al. actually requires two nested 

iteration loops: the matrix equations for    and    are each iterated to convergence in 

the PSOR solver in loop  ; PSOR is called inside loop  , which converges on values of 
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   and    for fixed velocity values   and  ; and   and   are themselves updated to 

convergence in loop   according to 

              (6.14) 

and 

            . (6.15) 

The data term robustness and smoothness diffusivity terms are updated in the   loop with 

each update of the velocity components   and  . 

As suggested in Brox et al., calculating optical flow fields in a multi-resolution 

manner on grids of increasing levels of refinement helps to reduce the chances of an 

optical flow solution becoming trapped in a local minimum that does not satisfy global 

minimization of the constraint equations and speeds convergence [12]. Thus, for both the 

Horn-Schunck and Brox methods, optical flow was solved on 3 different grid levels of 

side length   ,   , and     pixels, respectively, with each coarse solution providing the 

initial conditions interpolated onto the grid at the next level of refinement. Although this 

strategy was not proposed by Horn and Schunck in their work, it has been adopted here 

for both of the optical flow methods in order to provide a fair basis for comparison. 

6.3 Optical Flow Testing 

 

Both the Horn-Schunck and Brox et al. methods were tested extensively on a set 

of test images (Figure 6-1) before later applying them to real image sequences, in a 

process intended to highlight the abilities and limitations of each. Test images were all of 

dimension         pixels, and generated by a Fortran 90 code that was designed so 

that various shapes and types of motion between test image frames could be prescribed. 
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This way, the amount of error contained in a particular optical flow solution could easily 

be calculated by directly comparing the optical flow result with the prescribed motion.  

In all of the test image cases, the smoothness weight    in the Euler-Lagrange 

equations was set to 10.0, with the gradient weight (the weighting of the nonlinear terms) 

set to       in the Brox equations. A set of three test frames was generated for each 

case, and the optical flow fields computed between frames 2 and 3 were used for error 

analysis (the Euler-Lagrange equations derived by Brox et al. contain temporal 

derivatives in the optical flow field, itself, that rely upon the existence of a prior optical 

flow solution; the temporal derivative is typically neglected for the first image pair, but 

this yields a slightly less accurate result [12]).  

The images used for testing that are illustrated in Figure 6-1 are presented in 

increasing order of complexity with regard to geometry and motion, or a combination 

thereof, in an effort to systematically identify specific situations that lead to the success 

or failure of each optical flow algorithm. The optical flow field results computed in select 

cases are supplied in Table 6-1 and Table 6-2 at the end of this section, with Table 6-1 

giving vector magnitude and angular errors averaged over the entire image domain, and 

Table 6-2 showing the same quantities averaged only over pixels containing boundaries 

(i.e. the zero level of the signed distance field test image, the central contour of the 

smooth Heaviside functions, etc). 

6.3.1 Translational Motion of a Circular Level Set Field 

 

The first of the test image sets contains a circular signed distance field, defined by 

the function  
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  ( )     ,  (6.17) 

with   representing radial distance from a defined central location  , and   denoting a 

constant radius at which  ( )   . The field was prescribed with a translational motion 

(by defining a centroid velocity  ̇) that remained constant and equal in the horizontal and 

vertical directions (         ). This was initially regarded to be the simplest case, 

not only because of its smooth geometry and constant linear motion, but because the 

brightness gradient is radially constant and defined everywhere in the image domain. 

Both optical flow methods were tested first with a small field displacement 

(whereby   and   were both set to                 so that the brightness field would 

be displaced   pixel in the x-direction and   pixel in the y-direction on each image pair), 

and then with a large displacement (  and   both set to                 ). Figure 6-2 

and Figure 6-3 illustrate the results generated by each of the methods when given large 

field displacements, and Table 6-1 and Table 6-2 quantify the average errors. In each 

figure, the exact solution is shown in (A), along with the zero-level contour of the image 

field being translated. Figure 6-4 and Figure 6-5 (B) show the optical flow results of each 

method, with the velocity magnitude error (as a percentage of the exact velocity 

magnitude) shown in (C) and the angular error of the optical flow vectors (measured in 

degrees) given in (D). Immediately obvious from the figures and the tables is the fact that 

the method of Brox et al. produces significantly lower errors in both vector magnitude 

and direction, particularly along the boundaries of the zero-level. The velocity error 

magnitude is       near the zero-level contour, compared with almost 7% using the 

Horn-Schunck method. In the small displacement case, both methods perform better, but 

the errors produced by the nonlinear method are still around an order of magnitude 
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smaller. As will be shown later, this becomes particularly important when applying 

optical flow to imaged object boundary motion, as it is obviously of interest to supply the 

most accurate boundary conditions possible when coupling interfacial motion with a CFD 

solver. 

6.3.2 Translational Motion of a Circular Heaviside 

Function 

 

This case was set up identically to the previous one, but with a circular numerical 

Heaviside function defined as 

  ( )     (   ),  (6.18) 

where   is a scaling constant (set to 10.0), comprising the image field rather than a signed 

distance level set function. Here the level of difficulty has increased, because strong 

gradients are now only defined within the contours of the circle near its prescribed radius 

of 32 pixels, with much smaller intensity gradients presenting near the edges of the image 

domain. Even with a small displacement of                    , the Horn-

Schunck method is now beginning to show signs of difficulty, with magnitude errors 

nearly 5 times higher than they were in the previous image pair with the signed distance 

function (Figure 6-6 and Figure 6-7). Given the relatively large displacement magnitude 

of                     , the Horn-Schunck method began to produce large errors 

in its solution (Figure 6-4) that would simply be unusable for modeling, with velocity 

magnitude errors falling around 75%. Angular error was much smaller, averaging   °, 

but the result is still unacceptable for use in setting boundary conditions.  
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The method of Brox et al., on the other hand, consistently produced velocity 

magnitude errors well under 0.5% with angular errors of less than 0.1°; one of the 

benefits of preserving nonlinearity as reported in [12] is that it gives the method a greater 

ability to handle large object displacements in the absence of strong gradients over large 

portions of the image domain. This appears to be the case here, as well, with the Brox 

method showing a high level of accuracy even while the Horn-Schunck method was 

found to underestimate the velocity by more than half when faced with a large 

displacement field. 

6.3.3 Translational Motion of a Discrete Circular Shape 

 

Next, the demands placed on each optical flow calculation method were increased 

once again, by providing a discrete circular shape of constant zero intensity (black) 

against a white uniform background (intensity level of 255) as the translating object, in 

place of a circle or circular field with smooth gradients:  

  ( )  {
       
     

. (6.19) 

In this case, even with                    , the Horn-Schunck method began to 

show considerable difficulty reaching an accurate result; this is easily visible comparing 

the exact solution of Figure 6-8 (A) with the Horn and Schunck optical flow solution 

illustrated in Figure 6-8 (B). Velocity magnitude error was more than 100% on average, 

with vector angular errors averaging close to 30° on the circle’s boundaries. The Brox 

method continued to perform well, giving an average velocity magnitude error of less 

than 1% on the edges of the circle, with an average angular error of much less than 1°. As 

can be seen in Figure 6-10 and Figure 6-11, introducing larger object displacements by 

setting                     , the situation was considerably worsened for the 

Horn-Schunck method, while the Brox method remained robust, giving similarly small 



www.manaraa.com

272 
 

errors in velocity magnitude and vector direction to the case with smaller displacements. 

This further supports the assertion put forth by Brox et al. that their nonlinear formulation 

is not only much better at handling large displacements, as shown in the previous cases, 

but is also much better equipped to handle discontinuities in the image field. 

6.3.4 Complex Geometry and Motion: The Heaviside Star 

Function 

 

The last test image features a 7-pointed star shape (defined in [78]) which was 

given a numerical Heaviside function contour here to provide a smooth but steep edge 

gradient, 

  ( )    (          ), (6.20) 

with the Heaviside function defined in the usual manner by  ( )  
 

 
.  

 

 
       

 

  
/, 

  denoting the radial distance from the shape’s centroid,   representing a constant radial 

distance corresponding to the center of the Heaviside function’s smooth contour, and   

and   scaling the magnitude of the Heaviside function and sine wave amplitude, 

respectively. (These were set as      and        here.) This star shape was chosen 

because it features regions of high curvature near its edges and center, and its ―arms‖ 

point in seven different directions, giving rise to multiple radial and azimuthal gradients 

that allow for both linear and angular motion, and combinations thereof, to be defined 

and imposed. 

The first tests were run by prescribing a simple translational motion (with a large 

displacement) on the shape by setting                     . Visual results are 

given in Figure 6-12 and Figure 6-13 in the usual order, with error quantities listed in 
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Table 6-1 and Table 6-2. The method of Brox et al. continued to perform well as in 

previous cases, with an average magnitude error under 0.2% and average angular error 

under 0.05°. The Horn-Schunck method continued to produce much larger errors, even 

more so than in previous translational cases with the introduction of this more complex 

geometry, and with some of the largest errors occurring on the object’s edges where 

having a valid solution is the most critical for our purposes. 

Pure rotational motion (Figure 6-14 and Figure 6-15) appears to be a much greater 

challenge to these optical flow algorithms than translational motion, even when applying 

the nonlinear method. The error produced by the Horn-Schunck formulation was 

substantial nearly everywhere in the image domain, and greatest at the shape’s edges, but 

even the method of Brox et al. produced magnitude errors averaging 20% and angular 

errors around 6° -  although this error was predominantly located away from the edges of 

the shape (Figure 6-15 (C) and (D)). Even so, it would be difficult to justify using such 

results to set boundary conditions when the scale of the error so nearly approaches the 

scale of the motion being described. 

As a final test of these methods’ abilities, two types of motion were imposed on 

the Heaviside star shape simultaneously: translation with                     , 

and rotation with  ̇  
 

  
         . Here, the method of Horn and Schunck actually 

performed somewhat more favorably than it did when the star shape was undergoing pure 

rotation, but still gave unusable results in terms of setting boundary conditions (Figure 6-

16). In this case, the Brox method began to give larger errors (Figure 6-17), though 

mostly limited to an area in the upper left part of the image. Decreasing the linear 

displacement by setting                     improved the results obtained using 
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the Brox method, although the reliability of these vectors in setting boundary conditions 

for such cases exhibiting the greatest degree of complexity in geometry and motion is still 

questionable. 

Table 6-1. Average optical flow vector magnitude and angular errors computed over the 
entire image domain for selected test cases. 

Test Case Motion Type 
Optical Flow 

Method 

RMS Image 

Magnitude 

Error % 

RMS Image  

Angular  
Error ° 

Circular 

Signed 

Distance Field 

Translating- 

Small 

Displacement 

Horn-Schunck 4.19 0.58 

Brox 0.57 0.10 

Translating- 

Large 

Displacement 

Horn-Schunck 6.51 2.75 

Brox 2.71 0.32 

Circular 

Heaviside 

Field 

Translating- 

Small 

Displacement 

Horn-Schunck 7.22 0.19 

Brox 4.83E-02 1.33E-02 

Translating- 

Large 

Displacement 

Horn-Schunck 74.18 0.93 

Brox 4.82E-02 1.03E-02 

Discrete Circle 

Translating- 

Small 

Displacement 

Horn-Schunck 104.05 23.03 

Brox 0.90 0.19 

Translating- 

Large 

Displacement 

Horn-Schunck 124.69 24.41 

Brox 0.72 0.19 

Heaviside Star 

Translating- 

Large 

Displacement 

Horn-Schunck 73.84 27.25 

Brox 8.98E-02 2.09E-02 

Rotating and 

Translating- 

Large 

Displacement 

Horn-Schunck 325.78 28.24 

Brox 155.05 13.05 
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Table 6-2. Average optical flow vector magnitude and angular errors computed over 
pixels containing object boundaries for selected test cases. 

Test Case Motion Type 
Optical Flow 

Method 

RMS 

Boundary 

Magnitude 

Error % 

RMS 

Boundary 

Angular  
Error ° 

Circular 

Signed 

Distance Field 

Translating- 

Small 

Displacement 

Horn-Schunck 1.32 0.59 

Brox 0.26 5.75E-02 

Translating- 

Large 

Displacement 

Horn-Schunck 6.52 2.86 

Brox 1.52 0.27 

Circular 

Heaviside 

Field 

Translating- 

Small 

Displacement 

Horn-Schunck 7.21 0.32 

Brox 2.37E-02 7.49E-03 

Translating- 

Large 

Displacement 

Horn-Schunck 74.7 1.4 

Brox 2.28E-02 7.23E-03 

Discrete Circle 

Translating- 

Small 

Displacement 

Horn-Schunck 101.24 25.83 

Brox 0.93 0.18 

Translating- 

Large 

Displacement 

Horn-Schunck 125.33 26.44 

Brox 0.87 0.26 

Heaviside Star 

Translating- 

Large 

Displacement 

Horn-Schunck 83.07 23.22 

Brox 0.15 4.37E-02 

Rotating and 

Translating- 

Large 

Displacement 

Horn-Schunck 105.66 25.96 

Brox 30.21 7.62 

 

 

Overall, however, the method of Brox et al. performed well on most of the test 

images given the large displacements and complex geometries found in some of them. 

The results trend toward reliability when small displacements and smooth contours are 
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involved, so it is anticipated that optical flow should provide an accurate depiction of 

motion when applied to the images we are interested in modeling. 

6.4 Optical Flow Applied to Real Video Data: The 

Swimming American Eel 

 

With both optical flow methods developed and tested on a number of different 

geometries and kinematic conditions, they were then applied to the video sequence of the 

swimming American eel, which was described in detail in Chapter 3. First the image 

frames were denoised using the SRAD approach described in Chapter 4, with    set to an 

empirically favorable value of 0.3. After smoothing, each frame was segmented 

following the method of Gibou and Fedkiw, also described in detail in Chapter 4, with 

the inside weighting coefficient    set to 1.0 and the outer weighting coefficient    set to 

3.0. (This had the effect of biasing the segmentation contour toward the outermost edge 

of the intensity contours describing the eel’s body, which, due to poor contrast, are 

represented by a smooth gradient rather than a sharp boundary.) After segmentation, the 

zero-level contour position was calculated as described in Chapter 4 and a narrow-band 

level set field was constructed about the zero-contour using the fast marching method 

[24]. This narrow-band level set field is illustrated along with the zero-contour for one of 

the frames of the image sequence in Figure 6-19. 

As mentioned in Chapter 3, one complete cycle of the eel’s tail beat during 

swimming was captured in 36 video frames, thus giving 35 frame pairs (or 1 frame pair 

and 34 frame triplets with the Brox method) with which to calculate a set of optical flow 

field solutions. The optical flow was calculated for the entire tail beat cycle with both the 
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Horn-Schunck and Brox methods, setting the smoothness constraint coefficient to 

        for each, and the coefficient on the nonlinear terms to       for the Brox 

method. An example optical flow field, calculated using frames 8 through 10 of the 

sequence using the method of Brox et al., is illustrated in Figure 6-20. 

Because the correct vector solution for this sequence of images could not be 

known a priori, the performance of each of the optical flow methods was evaluated by 

comparing the displaced pixel values   (       ), resulting from iterating on the 

Euler-Lagrange equations until convergence, to the pixel values in their target frame (the 

next frame in the sequence,     (   )); a perfect optical flow solution should result in 

the two being identical everywhere in the image domain. Figure 6-21 and Figure 6-22 

illustrate the zero-level contours for the displaced pixel field (black line) and the target 

pixel field (grey line) along with the optical flow vectors obtained using each method. It 

is immediately obvious that the Horn-Schunck approach was not able to produce the 

correct updated pixel intensity field using the optical flow vectors solved for, clearly 

demonstrating its limited usefulness in supplying boundary conditions to a modeled 

object. However, the method of Brox et al. resulted in a displaced image field that closely 

matched its target, with maximum spatial deviations turning out to be much less than one 

pixel. Thus, the nonlinear optical flow method of Brox et al. appears to be a justifiable 

means of supplying boundary conditions without the use of Lagrangian points for this set 

of images. 
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6.5 Optical Flow Applied to Particle Fields: Red Blood 

Cells 

 

Another promising application of optical flow lies in the field of multiphase 

flows. The ability to track the motion of particles is important to the understanding of 

many phenomena of interest to engineering, such as the transport of pollutants, 

gastrointestinal mixing for nutrient absorption, and cardiovascular flows. For this work, 

optical flow was used to obtain preliminary results tracking the motion of red blood cells 

through a blocked channel, imaged during an experiment overseen by Dr. K.B. Chandran 

at the University Of Iowa Department Of Biomedical Engineering. 

In this experiment, RBCs at a hematocrit of 0.5 were allowed to flow through a 

channel of 500 microns width and 100 microns depth, constricting step-wise to a width of 

200 microns (Figure 6-23 (A)). The fluid flow behavior was completely laminar, with a 

Reynolds number of   (   ). In the image sequence, flow proceeds from left to right 

and, by virtue of its low Reynolds number, features a relatively thick boundary layer near 

the walls in which particle velocities appear to follow a nearly parabolic profile. Particle 

velocities are greatest near the top of the image, particularly within the constriction where 

the fluid clearly must accelerate to maintain its constant flow rate. 

The optical flow methods of Horn and Schunck, and of Brox et al., were applied 

to several image frames in the video sequence, with one result from each method 

illustrated in Figure 6-23 (B) and (C). Immediately notable is the completely random 

nature of the Horn-Schunck result – virtually no organized information about the flow 

characteristics is present whatsoever, with the exception of perhaps a small region in the 

corner of the channel constriction near the lower right side of the image. A likely cause 
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for this is the small size and relatively low density of the particles; object displacement is 

large between frames relative to the size of the objects, themselves, and, as was shown in 

the test image section leading this chapter, the linear Horn-Schunck equations are not 

able to handle large displacements very well, even when geometries are simple. 

However, in the near-wall boundary layer the particle motion is very small, so that each 

particle is displaced little from one frame to the next and the Horn-Schunck equations 

have less difficulty finding a plausible solution. 

The results produced by the method of Brox et al. are qualitatively encouraging 

over the majority of the image, but unfortunately become nonsensical near the channel 

constriction, where the fluid motion becomes more vigorous. Close-up views of this 

region reveal that aliasing is likely a key reason for the lack of a realistic solution here—

the amount of particle displacement between two image frames in this region is roughly 

the same as the particle spacing, itself. With all of the particles possessing such similar 

features in the image, it is impossible for the algorithm to correlate particle positions 

between frames in this part of the image domain. Experience in this work has taught 

through repetition that if human eyes and reasoning abilities cannot discern the motions 

of patterns in an image, then a computer algorithm has very little hope of doing the same; 

close-up views of the constricted channel region indeed provide no reliable visual cues 

about the motion occurring there. 

Obviously, much more investigation remains to be done with respect to 

quantifying motion in this type of image field, but these preliminary results hold promise. 

The aliasing seen in the channel constriction will create difficulties regardless of the 

approach taken in attempting to accurately describe behavior there, and so must be 
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eliminated as nearly as possible during the image acquisition process. A denser particle 

field might alleviate some difficulties, but that would require changing the physics of the 

experiment; the best solution is probably to simply increase the image acquisition rate, so 

that the particle displacement seen in image pairs is reduced. With the aliasing problem 

removed, optical flow may offer a route to quantifying the behaviors of particle flows 

with a level of simplicity not offered by other methods. 

6.6 Optical Flow Applied to Particle Fields: PIV 

 

The final application of optical flow considered in this work also deals with 

particles, now in the context of particle image velocimetry (PIV). PIV is a flow 

visualization technique in which small reflective particles being transported in an 

experimental fluid flow are illuminated with a laser sheet and photographed at two 

instants that are separated by some small time interval, the length of which is determined 

by the properties of the flow being imaged. A figure taken from [79] (Figure 6-24) 

illustrates how a typical PIV experiment is set up.  

Standard PIV algorithms employ statistical correlation functions that are 

evaluated in multi-pixel windows in order to determine the most statistically likely 

motion of particles contained within each window. Particle displacement during the time 

interval between two image frames being captured leads to changes in the brightness 

pattern from one image ( ) to the next (  ), as illustrated by Figure 6-25. Typically, these 

brightness patterns are cross-correlated over the pixel range of each interrogation window 

in the image domain, and the strongest correlation peak is used to determine a PIV 

vector. The peak’s direction of displacement from the center of the interrogation window 
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gives the resultant vector’s direction, and the distance it is displaced gives the vector’s 

magnitude (Figure 6-26 and Figure 6-27). For more details, the reader is referred to the 

comprehensive overview on PIV methods given in [79]. 

One of the drawbacks to the standard correlation-based PIV approach is that it 

produces a vector field that is usually significantly less dense than the pixel count of the 

image pair being evaluated. Interrogation windows must be large enough so that several 

particles remain within their bounds from one image to the next; otherwise, there will be 

insufficient correlation data and the information required for constructing a vector will 

not exist. This has led several authors to propose instead using optical flow methods as a 

means to track particle motion in PIV image pairs, thereby giving a velocity vector for 

every pixel in the image domain. See, for example [80], [81], [82], and [83]. 

One of the reasons the optical flow methods of Horn and Schunck and of Brox et 

al. were compared to such a large extent earlier in this chapter is that linear formulations 

are still quite prevalent in the literature. In [84], for example, the authors employ a Horn-

Schunck based optical flow algorithm, but it requires a multi-resolution Gaussian filter 

scheme with many tunable parameters just to produce an acceptable vector field. As was 

shown in previous sections, their heavy reliance on image smoothing was probably 

necessary because of the discontinuous nature of the intensity field at particle boundaries 

and because of the potentially large displacements undergone by particles relative to their 

size. By smoothing with multiple passes of a Gaussian filter, the image is in effect being 

defocused or ―smeared,‖ so that groups of particles behave more as a deforming cloud 

with smooth gradients. 
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Despite the continued prevalence of linear optical flow methods, some authors 

have made improvements by following a nonlinear formulation similar to that of Brox et 

al., and by using physically meaningful regularization terms in the brightness functionals 

in hopes of forcing the motion of brightness patterns to adhere to trajectories that could 

be realistically expected in a fluid flow. Corpetti et al. ([80], [81]) noted that the Euler-

Lagrange equations given by 

 ∫ |  |  |  | 
 

 (6.21) 

are the same as those associated with a first-order div-curl regularizer 

 ∫             
 

, (6.22) 

leading to a set of constraint equations that estimate the diverge and vorticity of the flow 

fields being solved for. Ruhnau et al. ([82]) employed the full incompressible Navier-

Stokes equations in their regularization term, giving the cost functional 

   
 

 
∫ *(       )

   (    )
   |  | +  

 
, (6.23) 

such that       and      , with    denoting the vorticity solution from the 

previous image pair (set to zero on the first pair). 

This work focuses on applying the method of Brox et al. to PIV images, with 

changes to the regularization terms in the constraint equations left as future work. It 

should be noted that initial efforts with the Horn-Schunck method on PIV images 

produced poor results similar to those shown for the RBCs in Figure 6-23, and thus the 

method was not considered further. To evaluate the performance of nonlinear optical 

flow on PIV images, several particle image sets were obtained from the PIV Challenge 

web site (http://www.pivchallenge.org/), the internet home of a contest held open to 
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members of industry and academia in 2003, 2005, and 2008 for the purpose of 

stimulating creative efforts toward developing improved PIV algorithms [85], [86], [87]. 

6.6.1 A Synthetic Rankine Vortex Image Pair 

 

The first pair of PIV images evaluated using nonlinear optical flow was a 

synthetic random Gaussian particle field prescribed with the motion of a Rankine vortex, 

which is defined as: 

    
 

 
   (6.24) 

    
 

 
(     . 

 

  
  /) (6.25) 

       (6.26) 

with      ,    , and             . The plane of view was inclined 20° to the 

vortex axis to give it a slightly elliptic shape. Figure 6-28 illustrates the optical flow 

solution for the synthetic vortex (D) compared to the solution given by the commercial 

PIV software package DaVis 7.2, a product of LaVision, Inc., using       pixel 

interrogation windows overlapped 50%. It can be seen that the results are qualitatively 

comparable, with the Brox result giving a denser velocity field (though the vectors are 

plotted every 8 pixels for visual clarity and better comparison with the DaVis result; 

contours of u-velocity are plotted along with the vectors). The Brox result also features 

fewer gaps in the vector field, and better resolves information near the vortex core, which 

is approximately outlined with a circle of equal radius and centroid on each image. (Note 

that the Davis y-axis is reversed, as the software is designed to read CCD digital camera 
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images directly, which are exported in this y-reversed format.) Thus, optical flow results 

produced by the established algorithm are encouraging on this image pair. 

6.6.2 Real vortex 

  

The next PIV image pair evaluated was again of a vortex, but this time it was 

acquired in a real experimental setup rather than generated synthetically. Figure 6-29 (A) 

and (B) show the original image pair, with (C) and (D) showing the results given by 

DaVis and nonlinear optical flow, respectively (the optical flow figure has been zoomed 

in    on the region surrounding the vortex for visual clarity). Unlike with the synthetic 

image pair, the DaVis results are clearly of much higher quality than the optical flow 

results in this case. This is thought to be caused by two fundamental differences exist 

between this image pair and the synthetic pair. First, the particle field is not uniformly 

populated. The vortex core has far fewer particles than the rest of the image, giving a 

strong intensity gradient radially toward the vortex center. Second, the overall intensity 

varies considerably between the first image and the second, probably due to differences 

in the two laser sheets used during image acquisition. Both the image brightness and the 

image brightness gradient are conserved quantities in the Brox formulation, which could 

be a leading contributor to this problem. It should be noted that the brightness and 

smoothness weighting parameters were left at the values used for other cases in this 

chapter, and could well have been maladapted to the specific requirements of this image 

pair. Clearly much work remains before the optical flow methods developed herein can 

be used to evaluate PIV images of this nature. 
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6.6.3 Synthetic shear flow 

  

Figure 6-30 shows the results of calculating the vector field on a synthetic shear 

flow image with a velocity gradient given by          . This case was considered to 

be of interest because the algorithms that were entered into the PIV Challenge that year, 

including one produced by LaVision, had such variation in their level of success with it; 

many of the algorithms produced large errors, with solution vectors nearly opposing their 

intended directions. In this work, however, DaVis was found to produce what appeared to 

be a reasonable solution, with the solution of the nonlinear optical flow method matching 

it closely, albeit more densely. Due to the high particle density and small image size, the 

interrogation regions were set to be     with 50% overlap in the DaVis software for 

this case. 

 Of particular note here is the presence of an overall spatial intensity gradient in 

this image pair. Yet, the Brox method was able to perform well qualitatively in this case, 

where it could not in the case of the real vortex images. This leads to the conclusion that 

the overall image intensity change has a large negative impact on the abilities of optical 

flow to accurately handle such images, or perhaps that radial intensity gradients are 

problematic for elliptic equations such as those of the optical flow algorithm. 

6.7 Conclusions 

 

Both the linear (Horn and Schunck) and nonlinear (Brox et al.) formulations of 

the optical flow method were tested extensively on a set of synthetically generated 

images possessing a variety of characteristics with regard to geometry, intensity 
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gradients, and kinematics. In each case, the nonlinear formulation of Brox et al. proved to 

be the superior method, consistently yielding small errors most of the time even when 

errors in the linear formulation became quite large. Applied to the video sequence of the 

swimming American eel, the nonlinear method proved its superiority further by 

successfully shifting a set of pixels from one frame to the next, with little discernable 

difference between the resulting configuration of the featured object and that which was 

expected.  

Overall, the nonlinear optical flow method of Brox et al. appears to be a reliable 

means of providing boundary conditions to imaged objects without the need to populate 

them with a set of Lagrangian points along their interfacial curves. It also holds promise 

as a method for tracking particles in video files such as that of the experimental channel 

populated with red blood cells, as well as in image pairs acquired for PIV analysis, 

particularly if it can be made more robust with physically meaningful regularization 

terms in the vein of Corpetti et al. or Ruhnau et al.  

Because nonlinear optical flow possesses the ability to solve for the motion of 

brightness patterns occurring in such disparate scales—i.e. large objects such as the eel, 

as well as small objects such as red blood cells and PIV particles—there exists the 

possibility for quantifying motion at several different scales of interest simultaneously 

through imagery, e.g. particles in a flow interacting with moving boundaries. With further 

refinement, it is hoped that optical flow can be brought to a state where obtaining the 

trajectories of particles, such as blood cells, along with the surface motion of large 

adjacent objects, such as vascular or cardiac tissues, can become a reality. 

  



www.manaraa.com

287 
 

 

Figure 6-1.         images generated for optical flow testing: (A) circular level set 
field; (B) circular Heaviside field; (C) binary circle; (D) star-shaped Heaviside 
field. 

A B 

C D 
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Figure 6-2. Horn and Schunck solution of the translating circular level set field,     
                : (A) exact vector field, with the zero level set shown; (B) 
Horn and Schunck vector field, with the zero level set shown; (C) map of 
velocity magnitude error %; (D) map of velocity angular error in degrees. 

  

A B 

C D 
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Figure 6-3. Brox et al. solution of the translating circular level set field,         
            : (A) exact vector field, with the zero level set shown; (B) Brox 
et al. vector field, with the zero level set shown; (C) map of velocity 
magnitude error %; (D) map of velocity angular error in degrees. 

  

A B 

C D 
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Figure 6-4. Horn and Schunck solution of the translating circular Heaviside field, 
                    : (A) exact vector field, with the zero level set 
shown; (B) Horn and Schunck vector field, with the zero level set shown; (C) 
map of velocity magnitude error %; (D) map of velocity angular error in 
degrees. 

  

A B 

C D 
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Figure 6-5. Brox et al. solution of the translating circular Heaviside field,         
            : (A) exact vector field, with the zero level set shown; (B) Brox 
et al. vector field, with the zero level set shown; (C) map of velocity 
magnitude error %; (D) map of velocity angular error in degrees. 

  

A B 

C D 
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Figure 6-6. Horn and Schunck solution of the translating circular Heaviside field, 
                   : (A) exact vector field, with the zero level set 
shown; (B) Brox et al. vector field, with the zero level set shown; (C) map of 
velocity magnitude error %; (D) map of velocity angular error in degrees. 

  

A B 

C D 
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Figure 6-7. Brox et al. solution of the translating circular Heaviside field,         
           : (A) exact vector field, with the zero level set shown; (B) Brox 
et al. vector field, with the zero level set shown; (C) map of velocity 
magnitude error %; (D) map of velocity angular error in degrees. 

  

A B 

C D 
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Figure 6-8. Horn and Schunck solution of the translating binary circle,        
           : (A) exact vector field, with the circle boundary; (B) Horn and 
Schunck vector field, with the circle boundary shown; (C) map of velocity 
magnitude error %; (D) map of velocity angular error in degrees. 

  

A B 

C D 
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Figure 6-9. Brox et al. solution of the translating binary circle,               
     : (A) exact vector field, with the circle boundary; (B) Brox et al. vector 
field, with the circle boundary shown; (C) map of velocity magnitude error %; 
(D) map of velocity angular error in degrees. 
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Figure 6-10. Horn and Schunck solution of the translating binary circle,        
            : (A) exact vector field, with the circle boundary; (B) Horn and 
Schunck vector field, with the circle boundary shown; (C) map of velocity 
magnitude error %; (D) map of velocity angular error in degrees. 
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Figure 6-11. Brox et al. solution of the translating binary circle,                
     : (A) exact vector field, with the circle boundary; (B) Brox et al. vector 
field, with the circle boundary shown; (C) map of velocity magnitude error %; 
(D) map of velocity angular error in degrees. 
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Figure 6-12. Horn and Schunck solution of the translating Heaviside star,         
            : (A) exact vector field, with the mean Heaviside contour 
shown; (B) Horn and Schunck vector field, with the mean Heaviside contour 
shown; (C) map of velocity magnitude error %; (D) map of velocity angular 
error in degrees. 
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Figure 6-13. Brox et al. solution of the translating Heaviside star,                
     : (A) exact vector field, with the mean Heaviside contour shown; (B) 
Brox et al. vector field, with the mean Heaviside contour shown; (C) map of 
velocity magnitude error %; (D) map of velocity angular error in degrees. 
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Figure 6-14. Horn and Schunck solution of the rotating Heaviside star,  ̇       
         : (A) exact vector field, with the mean Heaviside contour shown; 
(B) Horn and Schunck vector field, with the mean Heaviside contour shown; 
(C) map of velocity magnitude error %; (D) map of velocity angular error in 
degrees. 
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Figure 6-15. Brox et al. solution of the rotating Heaviside star,  ̇                : 
(A) exact vector field, with the mean Heaviside contour shown; (B) Brox et al. 
vector field, with the mean Heaviside contour shown; (C) map of velocity 
magnitude error %; (D) map of velocity angular error in degrees. 
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Figure 6-16. Horn and Schunck solution of the translating and rotating Heaviside star, 
                    ,  ̇                : (A) exact vector field, 
with the mean Heaviside contour shown; (B) Horn and Schunck vector field, 
with the mean Heaviside contour shown; (C) map of velocity magnitude error 
%; (D) map of velocity angular error in degrees. 
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Figure 6-17. Brox et al. solution of the translating and rotating Heaviside star,     
                ,  ̇                : (A) exact vector field, with the 
mean Heaviside contour shown; (B) Brox et al. vector field, with the mean 
Heaviside contour shown; (C) map of velocity magnitude error %; (D) map of 
velocity angular error in degrees. 

  

A B 

C D 



www.manaraa.com

304 
 

 

Figure 6-18. Brox et al. solution of the translating and rotating Heaviside star,     
               ,  ̇                : (A) exact vector field, with the 
mean Heaviside contour shown; (B) Brox et al. vector field, with the mean 
Heaviside contour shown; (C) map of velocity magnitude error %; (D) map of 
velocity angular error in degrees. 
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Figure 6-19. Eel narrow band level set field, with the zero level contour (the surface) 
shown as a black line. 
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Figure 6-20. Eel optical flow vector field for one image frame pair, solved using the 
nonlinear method of Brox et al. 
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Figure 6-21. Eel tail vectors for one image pair using the optical flow method of Horn 

and Schunck. The advected zero-level is superimposed onto the target zero-

level, showing poor matching between the two. 
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Figure 6-22. Eel tail vectors for one image pair using the optical flow method of Brox et 

al. The advected zero-level is superimposed onto the target zero-level, 

showing little difference between the two. 

  



www.manaraa.com

309 
 

 

Figure 6-23. Application to particle tracking. Video image of channel with red blood cells 

flowing through it (A). Horn and Schunck result (B) versus Brox result (C). 
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Figure 6-24. Image acquisition in a PIV experimental setup (figure taken directly from 
[79]). 
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Figure 6-25. Changes in the brightness patterns between two interrogation windows (one 
on the first image frame   and one on the second image frame   ) allow for 
particle motion to be evaluated (figure taken directly from [79]). 
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Figure 6-26. The evaluation of PIV algorithms is typically performed by cross-correlation 
of brightness patterns within interrogation windows. The size of the 
interrogation windows is dictated by particle density, which in turn dictates 
the density of the resultant vector field (figure taken directly from [79]). 
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Figure 6-27. The strongest correlation peak is generally used to determine a PIV vector; 
the peak’s direction of displacement from the center of the interrogation 
window gives the resultant vector’s direction, and the distance it is displaced 
gives vector magnitude (figure taken directly from [79]). 
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Figure 6-28. Comparison of the Brox et al. optical flow method with the DaVis 

commercial PIV software on a synthetic Rankine vortex field. 
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Figure 6-29. Comparison of the Brox et al. optical flow method with the DaVis 

commercial PIV software on a real image pair of a strong vortical flow. 
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Figure 6-30. Comparison of the Brox et al. optical flow method with the DaVis 

commercial PIV software on a synthetic image pair of a shear flow. 
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CHAPTER 7 

A TOTALLY EULERIAN APPROACH TO IMAGE-BASED 

COMPUTATION VIA OPTICAL FLOW AND THE TECHNIQUE OF 

MORPHING 

7.1 Introduction 

 

So far, this body of work has outlined the individual steps taken toward modeling 

complex objects and their interactions with fluids in a manner that not only preserves 

fidelity, but adheres to the simple framework of Cartesian grid formulations using the 

concept of level sets. This chapter presents the culmination of everything accomplished 

up to now, and represents the crux of this thesis: a demonstration of the complete process 

of modeling complex moving boundaries in CFD simulations from a completely Eulerian 

viewpoint without the use of surface meshes or functional approximations. 

In the previous chapter, optical flow was discussed as a means for setting 

boundary conditions on moving imaged objects without the need to construct surfaces by 

stringing together pairs of Lagrangian marker points. It was also originally hoped that 

optical flow vectors would provide the necessary information to reconstruct boundary 

configurations and effect motion between image frames, which are in general much too 

temporally coarse for CFD modeling (as discussed in Section 7.2). However, this 

approach didn’t end up performing as anticipated. Section 7.3, examines the results of 

attempting such a strategy and seeks to address its strengths and shortcomings. Section 

7.4 introduces the field of image morphing (which became necessary, to overcome the 

shortcomings of optical flow with respect to its ability to effect boundary motion on its 
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own), and provides a background overview of its fundamental concepts. Section 7.5 

outlines the morphing algorithm adopted for use in this work, and subsequent sections 

revisit the CFD simulation of the swimming American eel discussed in Chapter 3, now 

modeled entirely within the desired Eulerian framework without surface meshing. 

7.2 Translating Information from the Image Domain to the 

Computational Domain 

 

One of the key issues in developing a purely Eulerian level set-based approach to 

embedding imaged objects in flow computations is the need to translate information  

contained in the image (i.e. pixelized) domain onto the computational (adaptively refined 

flow mesh) domain.  This issue assumes two forms:  

1. Temporal interpolation: Within the context of this work, there is a need for 

temporal interpolation in the image sequence in order to obtain intermediate 

configurations of an object between image frames, so that its variations in 

position may be rendered with the temporal density required to couple it with a 

simulated fluid flow environment. For instance, if a fluid flow of maximum 

velocity     is simulated on a uniform mesh with a grid spacing of    

     , the              , 

     
   

  
  , (7.1) 

mandates that time stepping be smaller in magnitude than the grid spacing in 

order to reach a stable solution to the Navier-Stokes equations. Thus, using the 

same example, two image frames separated by a time step of           would 
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need to be morphed incrementally over 1,000 smaller steps in order for the object 

motion to match smoothly with the fluid motion.  

In practice, the maximum flow velocity is not constant throughout a CFD 

simulation (nor is the minimum grid spacing, if local mesh refinement is 

employed), and so time step sizes are continuously being updated by checking 

whether the CFL condition is being satisfied everywhere on the flow mesh. For 

this reason, it is necessary to keep track of the running time in the CFD solution 

process, and correlate it to the frame rate in the image sequence being used to 

construct the moving boundaries embedded in the fluid mesh.  

To elucidate this point, let         represent a local image time scale, which 

has an initial time of            for the source frame and a final time of 

           for the target frame of an ordered pair in a sequence. Let        

denote a corresponding flow time scale, having a start time     during which an 

object’s location is given by the source frame, and an end time     during which 

an object’s location matches that of the target frame. Any intermediate time   
  

between     and     can then be correlated to a fraction of         (Figure 7-8), 

and this fraction can be used to determine the morphing required to correctly 

update the object’s position. 

2. Spatial interpolation: The object to be modeled must be spatially interpolated 

from the coarse image domain consisting of pixels to a fine flow domain 

consisting of grid cells that may be locally refined to capture flow phenomena of 

interest. Thus, a key process in generating purely Eulerian CFD models involves 

mapping the level set fields obtained by image analysis onto the flow domain. 
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This mapping is performed in several steps. First, the image pixel 

locations are converted to real (   ) pairs (mapping the image domain Ω    ), 

so that imaged objects can be easily scaled and placed wherever desired on the 

corresponding flow mesh. For example, flow domains in this work are typically 

constructed with dimensions of  ( ) or  (  ), having grid spacing      and 

containing objects that are of  ( ) in size, in order to non-dimensionalize the 

fluid flow problems and to facilitate the variation of important parameters like the 

Reynolds number. Thus, an imaged object with dimensions of, for example, 1000 

pixels in length and 200 pixels in height is converted to a modeled object of 1.0 

unit length and 0.2 unit height by multiplying each (   ) pair in the image 

domain by a scaling parameter  . In addition,  - and  -shifting constants    and 

   may be added to the (   ) image addresses if necessary, to move the zero 

level set interface some desired distance away from the flow domain boundaries. 

7.3 Image Advection using Optical Flow 

 

It was demonstrated in Chapter 6 that the nonlinear optical flow method of Brox 

et al. offers a possible route to describing the motions of objects through image frames 

with a relatively high degree of accuracy. In particular, linear motion was captured quite 

well, even when the geometry was complex and the displacements between image frames 

were large. Angular motion errors, on the other hand, were found to be considerably 

higher, but it was hoped that an accurate description of motion could still be achieved in 

real image sequences, provided that they have good enough spatio-temporal resolutions 

to justifiably approximate their motions as linear within local pixel neighborhoods. 
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Chapter 6 also illustrated the effectiveness possessed by the optical flow method 

of Brox et al. at iteratively displacing brightness patterns to their correct locations; there 

is little discernable difference between the displaced source frame intensity field, 

       (   ), and the target intensity field,        ( ), being iterated toward once the 

solution is found in most cases. Thus, it was hoped that supplying an image or a 

segmented object boundary with its corresponding optical flow vector field would be 

sufficient to move it to its correct target location in the next frame of the sequence. 

However, in practice this did not turn out to be the case.  

The iterative process followed in the method of Brox et al. is nonlinear, so pixels 

undergoing displacement do not, in general, follow the straight path that is represented by 

the final result in reaching their target destination. Thus, when the image brightness is 

advected in the usual sense by projecting the optical flow vectors onto the intensity 

gradient at each pixel location with the assumption of brightness constancy, that is, by 

solving the advection problem 

 
  

  
       , (7.2) 

or 

 
  

  
   

  

  
  

  

  
, (7.3) 

the same end result is not achieved. It can be seen that this way of moving brightness 

patterns becomes particularly inaccurate in regions where optical flow vectors are 

oriented normal to the brightness gradient;        in this situation, resulting in little 

or no motion of the imaged objects there regardless of the magnitude of the optical flow 

vector | |. 
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Attempts to move the level set representation of imaged objects under the 

influence of optical flow vectors failed for precisely the same reason. According to the 

level set equation, the motion of a level set occurs in a direction normal to itself 

according to some speed function  : 

 
  

  
  |  |   . (7.4) 

In this case, the speed function   is composed of the optical flow vectors projected onto 

the normal vectors of the level set field surrounding an object’s boundary, or      , 

giving 

 
  

  
    |  |   . (7.5) 

Rewriting the normal vector in terms of the gradient of the level set field, 

   
  

|  |
, (7.6) 

the level set equation becomes 

 
  

  
   

  

|  |
|  |   , (7.7) 

or 

 
  

  
       . (7.8) 

This leaves us in the same predicament we had with the brightness advection equation 

(Equation 7.2), because the gradient of a level set field about an object boundary is 

oriented the same way as the pixel intensity gradients marking the ―edge‖ of that object, 

and so attempts to advect the level set with the optical flow vectors give the same results 

as similar attempts to advect the intensity field. 

Figure 7-1 and Figure 7-2 help to elucidate the problems encountered during 

optical flow-based advection. Figure 7-1 shows five intermediate zero level set positions 
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describing the contour of the swimming American eel, taken at regular intervals for each 

of two optical flow field solutions that are temporally adjacent. It can be seen that along 

the part of the eel’s body away from the tail near the left side of the figure, the level set 

contours are spaced fairly regularly, indicating near constant motion there, which is the 

desired result. In this part of the image, the optical flow vectors are predominantly normal 

to the interface, pointing in the direction of the level set gradient and thus in the direction 

of the image brightness gradient. However, at the tip of the eel’s tail, motion is almost 

completely tangential to the level set normal vectors, resulting in a large under-prediction 

of motion there (Figure 7-2). The result is that the tail makes large jumps in position 

between the final advection step of one image frame pair and the first advection step of 

the subsequent image pair. 

So, despite the fact that the optical flow vectors produced by the method of Brox 

et al. possess a high degree of accuracy, another method of moving interfaces from one 

location to another in intermediate steps between image frames was needed. This is the 

subject of the next chapter section. 

7.3 Introduction to Image Morphing 

 

Image morphing is defined as the process of constructing a smooth, natural-

looking sequence of images between an ordered image pair [88], consisting of two steps. 

The first is warping, which typically involves a nonlinear coordinate transformation that 

aligns user-defined landmarks while imposing regularity or smoothness constraints on the 

coordinates that lie between landmarks [88]. The second step is blending, which fills in 

the differences in detail and color not captured during the warping process, and is 
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typically based on pixel color/intensity interpolation. Applying the two steps 

incrementally results in a smooth transition from one image to the other that includes 

both the shape (warping) and the intensity/color (blending) [88].  

Unfortunately, the warping/blending approach assumes that all relevant image 

properties have been properly matched during the warping step. Let      denote a picture 

in the first (source) image and      a corresponding pixel in the second (target) image, 

where         and         on a pair of images that are each of size    . The 

method of cross dissolving one image to the next is accomplished by setting a transition 

parameter   ,   -, so that the blending process gives a family of images     ( ) in 

which     ( )       and     ( )      . The cross dissolving method of image blending 

is then simply a linear interpolation, and can be represented as 

     ( )  (   )           (7.9) 

When the source and target images are not properly matched, cross dissolving 

creates a ―ghosting‖ effect (Figure 7-4) in which the source image appears to fade out of 

the image domain while the target image fades in—an effect that is quite noticeable in 

regions of high contrast, such as object boundaries, thereby giving limited usefulness to 

this method for the purposes of image-based modeling. 

In [88], the author (Whitaker) argues that better approaches to image blending 

place fewer demands on the warping process, thereby reducing the need for user input in 

the morphing process overall, and so improvements in image blending methods are 

important for applications that must generate sequences of images with little to no user 

input. In Whitaker’s proposed approach, transition images between given image frames 

are not constructed by simple interpolation as in Equation 7.9, but rather are generated 
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based on the shapes of level sets in the input images. A distance metric is constructed 

which penalizes images based on difference in the shapes of their level sets, and thus acts 

to deform the shapes of image objects as they are evolved between frames. This results in 

a set of transition images that represent intermediate shapes naturally through the 

blending process. 

Treating an image as a continuous function   Ω   , where Ω     is the image 

domain and     is the set of intensity values contained in the image, we let  (   ) and 

 (   ), with (   )  Ω, represent a source and a target image, respectively. The image 

blending strategy, then, involves constructing a family of images, indexed by   and 

starting with the source image   (   ) at    , which progressively appear more like 

the target image  (   ) as   increases [88]. 

Regarding the functions   and   as representations of points in some higher-

dimensional function space, a linear interpolation is simply a straight line path through 

the function space between   and  , parameterized by   (Figure 7-3 a). The path from   

to   may be constructed by gradient descent over parameter   on a distance function that 

approaches zero as    . Alternatively, a path may be constructed on which   and   

are both allowed to progress toward each other simultaneously with respect to   (Figure 

7-3 b). The paths of these functions through the function space can be defined as 

 (     ) and  (     ), where  (     )   (   ) and  (     )   (   ), and the 

point where they meet in function space is the transition image between   and  . In this 

way, a blend,  (     ), is obtained by reparameterizing the solutions of   forward in 

time and the solutions of   backward in time to produce a sequence from   to   with 

respect to the parameter  . 
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Clearly, different metrics will produce different paths through the function space 

occupied by   to  , and will thus lead to different blends between image frames (Figure 

7-3 c). A metric typically employed in image analysis is the    norm: 

  ( )  
 

 
∫ ( (     )   (     ))

 
     

 
 (7.10) 

Setting the temporal derivatives of   and   to the negative of the first variation of 

Equation 7.10 gives a system of gradient descent equations over time  , 

 
  (     )

  
  (     )   (     ) (7.11) 

 
  (     )

  
  (     )   (     ), (7.12) 

where  (     )   (   ) and  (     )   (   ). Since Equations 7.11 and 7.12 only 

contain derivatives in  ,   and   may be regarded as parameters, and thus they may be 

treated as a coupled pair of ordinary differential equations at each point in the domain, 

with the solution 

  (     )  
 

 
( (   )   (   ))  

 

 
( (   )   (   ))     (7.13) 

  (     )  
 

 
( (   )   (   ))  

 

 
( (   )   (   ))    . (7.14) 

The steady-state solution  (     )   (     )  
 

 
( (   )   (   )) is the transition 

image between   and  .  

Because Equations 7.13 and 7.14 represent an exponential decay toward the 

transition image, rather than a linear interpolation as given in Equation 7.9, the final 

blend is obtained by 

  (     )  {
 (       (    ))         

 

 

 (       (    ))     
 

 
    

. (7.15) 
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Here it is noted that such a distance metric formulation on the image domain is 

limited in that it only considers single-pixel comparisons between images, and that it is 

sensitive to nonlinear transformations acting on the intensity functions   and  . 

Therefore, it is proposed to treat the image domain as a set of isocontours (level sets) 

rather than a collection of individual pixels. This allows for inter-pixel relationships to be 

considered in the difference metric when blending an image from one frame to the next.  

Defining the     level set of path   through function space from   to   as 

    2. 
 
/|  (   )   3, (7.16) 

a point’s location can be determined to be either ―inside‖ or ―outside‖ of the level set   

by applying the Heaviside function to the values of    ( (   )   ). (The definition of 

what is ―inside‖ versus ―outside‖ of a level set is arbitrary, as long as the definition is 

applied consistently.) 

Using this new level set definition of the image domain, a distance metric may be 

constructed as before, but now based upon the differences between regions contained 

within level sets on the two images (  and  ), so that the metric’s potential is 

proportional to the area of level set shapes in one image that are not in the other. Defining 

functions of   and   that are negative inside the     level set and positive outside, 

   , -  
 

 
( (   )   (   )) (7.17) 

   , -  
 

 
( (   )   (   )), (7.18) 

the overall distance metric for level set   is given by 

  ( )  
 

 
∫ (  , ( )-    , ( )-)

      
 

 
 

 
∫ ([ (   ( ))   ( ( )   )]  
 

[ (   ( ))   ( ( )   )])
 
     .  (7.19) 



www.manaraa.com

328 
 

Minimizing the metric with respect to a single level set   leads to a pair of Euler-

Lagrange equations 

       
 

 
, (   ) (   )   (   ) (   )   (   ) (   )  

 (   ) (   )-  (7.20) 

       
 

 
, (   ) (   )   (   ) (   )   (   ) (   )  

 (   ) (   )-,  (7.21) 

where   is the Dirac delta function (the derivative of  ), and ( ( )   (  )) ( )  

 . Because  (  )   ( ), Equations 7.20 and 7.21 reduce to 

        
   

|   |
 (   ) (7.22) 

and 

        
   

|   |
 (   ). (7.23) 

Since the   functional performs a wave front propagation of the     level set of  , 

while the gradient magnitude of   gives the same result on all level sets of   

simultaneously, the Dirac delta term  (   ) in Equation 7.22 can be remapped to |  | 

whenever    . (The same holds true for   in Equation 7.23.) Thus, performing 

gradient descent on   and  , and parameterizing the sequence of images by   gives a pair 

of differential equations which are the level set equivalent of Equations 7.11 and 7.12 

 
  

  
 

   

(   (   ) )   
|  | (7.24) 

 
  

  
 

   

(   (   ) )   
|  |, (7.25) 

where   is a small constant (set to      in [88]) provided to safeguard against division by 

zero in the limiting case where    . 
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In the pixel-based linear interpolation given by Equation 7.9, the resulting 

distance metric equation (Equation 7.10) was solved using gradient descent to give a pair 

of coupled ordinary differential equations (7.11 and 7.12), and then resampled from the 

time parameter   to the transition parameter  . This resampling equation (7.15) was 

constructed metric to ensure that the sum of absolute values of image differences would 

decrease at a constant rate with respect to  , giving a blend that appears to change 

consistently as   is varied from   to  . This type of behavior may be replicated in the 

level set formulation of image blending by adjusting the sampling rate to give a constant 

change in some image metric  ( ), thereby giving the intervals in   at which to take 

―snapshots‖ in order to produce the desired sequence of blended images. Due to its 

straightforward implementation and the qualitatively good results it is able to consistently 

give, Whitaker proposes a root-mean-squared metric, 

  ( )  [∫ (   )      
 

]
   

, (7.26) 

with the discrete form 

  ( )  ∑ ∑ (         )
 
   

 
    (7.27) 

to be used during implementation. 

The algorithm given to produce   transition images between frame   and frame   

was thus given as follows: 

1) Compute the difference metric on the source and target images to give 

  ( )  [∫ (   )      
 

]
   

, (7.28) 

2) For each of the   transition images out of   total transition images between image 

frames, solve the level set blending equation with forward differencing until a time   

is reached which satisfies 
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  ( )  
   

 
 ( ). (7.29) 

In this way, image morphing proceeds consistently through the intermediate steps 

between image frames. 

Another method proposed by Mukherjee and Ray [89] takes an alternative 

approach to that of Whitaker, applying morphing to a level set that is defined by a single 

segmentation contour. This was considered worth investigating, as it is directly 

applicable to the idea of morphing a modeled object in order to ascertain intermediate 

configurations within the framework already developed. Recall that the level set equation 

describes the motion of a level set in a direction normal to itself according to some speed 

function  . Mukherjee and Ray proposed a speed function that incorporates three 

different effects: an elastic force applied to the zero-level curve, a curvature-dependent 

force, and a speed contribution that comes from the optical flow vectors surrounding the 

moving object segment.  

The elastic (expansion-contraction) force is supplied to a segmentation curve by 

defining a distance metric similar to that given in Whitaker’s level set formulation, i.e. 

  (   )   (  (   ))   (  (   )), (7.30) 

where    and    represent level set representations of segments in the source and target 

images, respectively, and   represents the Heaviside function as usual. Level set 

contours are again defined as separating an ―inside‖ region from an ―outside‖ region, so 

that the distance metric takes a nonzero value when source and target level sets are 

separated by some distance, and approaches zero as the morphed level set  (   )  

  (   ). 
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Thus, the evolution of a level set curve under the influence of the elastic force 

defined in Equation 7.30 is given by 

 
  

  
   (   )|  |. (7.31) 

In addition to the distance metric Equation 7.31, Mukherjee and Ray introduce a 

curvature-dependent force,   , to the speed function in order to force level set curvature 

toward its target value throughout the morphing process. 

     ( (   ))   (  ( )) (7.32) 

In Equation 7.32,   represents the curvature of any level set curve  , and is given by  

  ( (   ))    .
  

|  |
/     . (7.33) 

Level set motion under the influence of curvature differences, then, is simply 

 
  

  
    |  |. (7.34) 

Finally, Mukherjee and Ray incorporated optical flow-based shape deformation 

into the morphing process, arguing that motion vectors on each level set contour direct to 

a new position of the initial curve, and therefore should yield a curve which has evolved 

with respect to its initial position due to optical flow. Assuming level set evolution in the 

normal direction, the optical flow vectors are projected onto the unit normal vectors on 

the level set field to give their speed contribution: 

 
  

  
 〈 (   )  .

  

|  |
/〉 |  |. (7.35) 

Combining the effects of the elastic force, curvature-dependent force, and the 

optical flow field into a single speed function, the final level set evolution equation is 

 
  

  
  . (   )    〈(   )  .

  

|  |
/〉/ |  |,  (7.36)  

which reduces to  
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   (   )    〈(   )  .

  

|  |
/〉 (7.37) 

when the level set field is maintained as a signed distance function. 

7.4 The Image Morphing Algorithm 

 

In practice, the method proposed by Mukherjee and Ray did not work for our 

purposes. While the elastic force turned out to morph the level set field from one frame to 

the next quite well on its own, adding the other terms only served to detract from its 

ability to reach the target solution in the regular fashion being sought. Adding the optical 

flow advection term to the speed function was especially problematic; as was described 

in Section 7.3, the optical flow information did little to alter the morphing path of regions 

where the level set gradient was orthogonal to local optical flow vectors, such as the end 

of the eel’s tail. In regions where optical flow vectors were oriented in the same direction 

as the level set gradient (normal to the body’s surface), the additive effect of the vectors 

on the morphing process caused an over-prediction of motion. This resulted in the level 

set curve ―overshooting‖ its target position, which then had to be corrected for by the 

elastic force acting in a direction back toward the source again. Thus, adding these extra 

terms proved to be counterproductive, so it was decided to morph the level set field using 

only the elastic force, employing the root-mean-squared metric proposed in [88] to 

evolve the level set curve in a regular fashion between image frames. 

 Of course, the elastic force chosen to produce morphing is not linear, but rather 

decays exponentially as  (   )    (Figure 7-7), so morphing must take place on a third 

time scale        , ranging between         , when     and     ( )      , and 

        , when     and     ( )      . 



www.manaraa.com

333 
 

In order to deal with the disparity between the morphing time scale and the image 

time scale, the root-mean-squared metric proposed by Whitaker was used to obtain a 

sampling rate in which morphed image objects would match up with their correct 

locations throughout progression through the fluid flow time scale (Figure 7-8). The 

algorithm is summarized as follows: 

1) Calculate the initial image metric value  ( )  [∫ (   )      
 

]
   

. 

2) For any   
  falling between flow time intervals     and    , find the corresponding   

  

between image frame times            and            using an appropriate 

scaling relationship between    and   , i.e.  

   
  

  
     

      
. (7.39) 

3) Evolve the morphing process until the appropriate morphing time       
  by checking 

the metric value  

  (      
  )   ( )  

 ( )  ( )

                 
(  

          ). (7.40) 

Because  ( )    when morphing is complete, and            and           , 

Equation 7.40 reduces to 

  (      
  )   ( )(    

 ). (7.41) 

The morphing process is evolved until Equation 7.41 is satisfied, thus giving morphed 

images at regular time intervals corresponding to the intervals at which flow information 

is plotted. 

Like Figure 7-1, Figure 7-5 shows five intermediate zero level set positions 

describing the swimming American eel, taken at regular intervals for each of two optical 

flow field solutions that are temporally adjacent. Comparing to Figure 7-1, it can be seen 
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that the jumps in image position between the final morph of one frame and the initial 

state of the next have been eliminated; a consistent motion of the boundary has been 

achieved through use of the elastic force model and an appropriate sampling rate. Figure 

7-6 gives a close-up view of the tail region again, just as Figure 7-2 did, illustrating the 

morphing process through 3 image frame pairs. 

Like any method, the elastic force model chosen for image morphing is not 

perfect. The primary difficulty found with respect to our purposes involves the morphing 

path rather than the final result. Careful examination of Figure 7-5 and Figure 7-6 reveals 

that the eel’s tail does not take a linear trajectory when morphing from one frame to the 

next, but rather takes one in which the eel’s overall body length appears to slightly 

shorten and then lengthen again. This happens because the distance metric has a zero 

value where the initial and final curves cross (Figure 7-9); the curves are not separated by 

any distance there, and so there is no driving potential for motion. The effect is that curve 

motion can occur around this zero-potential point, but not through it, so it acts as a sort of 

node during the iterative morphing process. This problem will always exist when initial 

and target fields overlap, but can be minimized in its effect with greater temporal 

resolution, so that curves are never greatly displaced between frames and the relative 

effect of zero-potential curve crossings becomes smaller. 

7.5 Interpolation onto the Flow Mesh 

 

The morphing algorithm just outlined provides a temporal interpolation from a 

coarsely sampled image time scale to a finely sampled fluid flow time scale. Similarly, 

modeled objects must be spatially interpolated from a coarse image domain consisting of 
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pixels to a fine flow domain consisting of grid cells that may be locally refined to capture 

flow phenomena of interest. Thus, the final process left in generating purely Eulerian 

CFD models involved mapping the level set fields obtained by image analysis onto the 

flow domain. 

This mapping was performed in several steps. First, the image pixel locations 

were converted to real (   ) pairs (mapping the image domain Ω    ), so that imaged 

objects could be easily scaled and placed wherever desired on the corresponding flow 

mesh. For example, flow domains in this work are typically constructed with dimensions 

of  ( ) or  (  ), having grid spacing      and containing objects that are of  ( ) in 

size, in order to make problems more dimensionally intuitive and to facilitate the 

variation of important parameters like the Reynolds number. Thus, an imaged object with 

dimensions of, for example, 1000 pixels in length and 200 pixels in height could be 

converted to a modeled object of 1.0 unit length and 0.2 unit height by multiplying each 

(   ) by a scaling parameter  . In addition,  - and  -shifting constants    and    could 

be added to the (   ) image addresses if necessary, to move the zero level set interface 

some desired distance away from the flow domain boundaries. The result was a scaled, 

shifted version of each pixel location  ̂               . 

With each of the image pixels defined as a point with a scaled and shifted spatial 

address, the flow mesh points were swept over to examine whether they were within the 

bounds of  ̂   , i.e. between  ̂    and  ̂    in the horizontal direction, and between  ̂    

and  ̂    in the vertical direction. If they were in fact found there, then their 4 nearest 

neighbors on the corresponding scaled and shifted image domain were used to interpolate 

the image level set value onto the flow mesh via bilinear interpolation. Because a narrow 
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band level set field was used in constructing interfaces, anything in the fluid domain 

outside of the narrow band was set to the outermost level set value, e.g.    , so that the 

result was a fluid flow mesh consisting of a level set value of     everywhere except for 

within the narrow band field describing an interface (or beyond the inner edge of the 

narrow band, where the level set value was set to     ). 

It is important to note here that when an image domain is rescaled and shifted for 

mapping to the fluid mesh,         is still not the same as        in general. Thus, when 

mapping level set values from an image domain onto a fluid domain, the level set values 

must be scaled appropriately. Before scaling, the pixel         was assumed to be 1.0 

for simplicity, giving a field of narrow band level set values ranging between   . In this 

work, those values were maintained even after image rescaling, so that the level set field 

could simply be multiplied by        after mapping to get the correct values. 

Although the elastic force model was chosen for image morphing due to the 

limitations of optical flow-based advection on its own, optical flow vectors are still used 

to set boundary conditions on the zero level set contour in moving boundary flow 

simulation problems; indeed, optical flow may be the only way to do this in a Eulerian 

setting without reverting back to the use of surface points. So, the optical flow vector 

field was interpolated onto the flow mesh from the image domain just as the level set 

field values were. Since optical flow vectors are computed on image sequences under the 

assumption that pixels are unit size and frames are separated by some arbitrary unit time, 

the resultant vector field is in terms of             . The displacement aspect of the 

optical flow velocity field was scaled by multiply by        just as the level set field 

was, but the temporal component was set separately based on the physics of the problem, 
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by simply determining what the frame rate should be in order to produce a desired 

velocity within the flow domain and setting         accordingly. 

Since the optical flow field is piecewise constant between image frames, the 3-

frame strategy described in Chapter 3 was also used here to create a piecewise linear 

optical flow field, thereby averting the discontinuous jumps in velocity otherwise 

produced by a piecewise constant profile:  

                   
 , (7.42) 

where      and      represent optical flow velocity vectors solved between on ordered 

frame pair and the next, respectively. 

It is noted that an image must be morphed and re-mapped to the corresponding 

flow domain after each fluid time step during CFD simulations. While this accounts for 

little of the total run time compared with solving for the optical flow field, or certainly 

compared to solving for the fluid flow field, it would still be computationally wasteful to 

sweep over the entire flow domain every single time step, find corresponding image 

domain locations, and then update the values everywhere (even if they’re ―updated‖ to 

the same value). To eliminate this wastefulness, the flow solver code has a built-in 

memory structure containing only points that lie within the narrow-band level set, storing 

their spatial locations within the flow domain along with their level set values. Mapping 

the image level set and interface velocity from the scaled and shifted image domain to the 

flow domain need only take place within the narrow band where such information is 

necessary for setting boundary conditions, and by sweeping over these level set ―tube‖ 

points rather than the entire flow domain, the vast majority of flow grid points can often 

be eliminated from the search and update process. 
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7.6 CFD: Revisiting the American Eel Simulation 

 

To demonstrate the entire framework developed in this thesis, i.e. directly linking 

the image information to computations, the swimming American eel simulation that was 

discussed in detail in Chapter 3 was simulated once again. The domain was set up 

precisely as before, with dimensions of 5.0 units length in the x-direction and 2.0 units 

height in the y-direction. The eel’s body was scaled to be unit length, and it was placed in 

the domain centered vertically and placed one unit length from the inlet. A base mesh 

size    
    

        was assigned, with four levels of refinement giving a minimum 

mesh size of    
    

       . The domain was assigned an inlet boundary condition 

with velocity       on the left side, a passive outlet condition on the right side, and 

Dirichlet boundary conditions with       on the upper and lower sides as before, in an 

attempt to approximate open flow conditions. As in the Lagrangian model before, the 

Reynolds number was set to        , and three different Strouhal numbers –        , 

and     – were evaluated by setting                ,                , and 

                , respectively (yielding tail beats that took      ,      , and 

          to complete). 

Despite the fact that both the Eulerian and Lagrangian cases were set up in the 

same manner, the two methods produced distinctly different results. Plots of vorticity are 

supplied in Figure 7-10 through Figure 7-13, y-velocity in Figure 7-14, and x-velocity in 

Figure 7-15; Side-by side comparisons of the Lagrangian and Eulerian methods are 

provided in Figure 7-16. Though the methods share some common traits – both transition 

to a wake with a thrust signature at a Strouhal number of       , for example – it is 
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immediately evident that the wake structures have significant differences in all Strouhal 

number regimes between the two methods. In the original Lagrangian method, each 

traverse of the eel’s tail generated a shear layer with an unstable aspect ratio, causing it to 

separate into two vortices of the same sense. Vorticity was diffused quickly in the wake, 

but the beginnings of a 2p-type wake structure appeared to be developing. The new 

Eulerian method, on the other hand, produced one distinct vortex with each reversal of 

the eel’s tail, resulting in a more prototypical vortex street. An unstable shear layer was 

developed as before, but it did not separate into 2 vortices like the shear layer in the 

original calculation did.  

Examining the surface of the eel’s body a little bit closer reveals some possible 

reasons for this disparity. The first reason has to do with boundary conditions. Recall 

from Chapter 3 that the Lagrangian surface meshing algorithm employed in the original 

method required a one-to-one point correspondence between sets of surface points in 

each of the three frames being used, in order to calculate interface position and velocity. 

Thus, each of the surface meshes required the same number of points. However, because 

curve length was not conserved between image frames, the surface points had to be re-

spaced each time the image frame was updated, giving surface meshes with points 

arranged in equal intervals. Such translation of the points along the surface introduced 

spurious tangential velocities in the boundary conditions on the surface of the eel; 

velocities that were often in the wrong direction altogether.  

Figure 7-17 and Figure 7-18 illustrate velocity vectors near the tail region for each 

of the two methods used. It is plain that the surface vectors produced by the Lagrangian 

method are completely incorrect; there is a strong tangential component pointing from the 
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eel’s tail toward its front, a result completely at odds with what is expected. The optical 

flow surface vectors, on the other hand, behave according to expectations, with strong 

normal components everywhere except where there is a reversal in the eel’s side-to-side 

motion (at which point the surface vectors become very small). In any case, the vectors 

produced by optical flow are never seen to point in the opposite direction to where they 

should.  

Examining the strength of vorticity along the eel’s body, it was found to be 

stronger overall in the original method (        versus        ), likely due to the 

incorrect tangential velocity component on the surface, which pointed opposite to the 

direction of the flow and thereby effectively increased skin friction and the flow’s 

angular velocity there. This translated into a stronger shear layer being shed from the tail 

during its traverse from one side to the other, leading to the formation of a stronger 

vortex pair once the shear layer separated (Figure 7-19). It is interesting to note that these 

incorrect boundary conditions actually led to a wake structure that was closer to what was 

expected based on experimental data, suggesting that a higher Reynolds number may 

need to be simulated before the expected behavior is seen using the new optical flow 

method. 

Another possible reason for differences in vortical strength between the two 

methods involves geometry. When the surface was meshed with Lagrangian points, a 

good deal of smoothing had to be performed on the set of points in order to recover a 

curve sufficient for flow modeling. In the process of smoothing the points, some of the 

geometric information describing the eel was lost. This can be easily seen in Figure 7-20, 

which shows the zero level set curve for each method at one instant in time, as well as in 
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Figure 7-21, which shows the nose of the eel up close. The tail region suffered the 

greatest deformation in the original case, with smoothing acting to flatten the high 

curvature there. Since this is where all of the vortex shedding takes place, it is reasonable 

to expect that the tail’s geometry plays a significant role in what happens beyond it in the 

wake. The nose of the eel was also significantly deformed in the original method, 

yielding a streamlined shape which could have affected the development of the boundary 

layer downstream, and subsequently the vorticity on the body. The new optical flow-

based method eliminates these surface smoothing operations, with error coming only 

from image denoising, and from the lack of image resolution, itself – both of which 

affected the original method as well. 

Like in the original Lagrangian models, each of the Eulerian cases was examined 

with a control volume analysis that was set up in the same manner described in Chapter 

3, for the purpose of measuring drag (or thrust) production by the eel during swimming. 

Figure 7-22 shows the instantaneous drag coefficients measured in the wake through one 

complete tail beat for each Strouhal number, and Figure 7-23 plots the average drag 

coefficient for each tail beat modeled using both the Lagrangian and Eulerian methods. 

The character of the instantaneous drag coefficients turned out to be quite different 

between the two methods, with the Eulerian model lacking the strong periodic thrust 

production that came with the start of each new tail beat as seen previously. This 

difference also shows up in the average coefficient values, as the Eulerian model did not 

show nearly the overall thrust production of the Lagrangian model. It is possible that this 

is due to the fact that the spurious point motion seen in the Lagrangian models favored 

more shear along the eel’s surface, and hence the shedding of stronger vortices, or it 
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could be due to differences in the overall geometric description between the two methods, 

or it could simply be a product of invalid control volume assumptions. Future analyses 

should include a more thorough control volume study, whereby the control volume can 

be more closely fitted to the body’s surface, and all flow variables can be accounted for 

along each of the control volume’s edges in order to eliminate the need for the 

assumptions made here. 

7.7 Conclusions 

 

In this chapter, it was shown that it is not only possible to generate computational 

models without the use of any surface meshing whatsoever, but that such computational 

models can potentially produce better results that more tedious schemes that build surface 

meshes on to images prior to computation. The original image-based modeling algorithm 

employed in this thesis was advantageous in that it enabled modeling complex geometries 

and motions directly from video files rather than having to immediately move to 

mathematical approximations. However, the requirement of surface meshing introduced 

its own set of assumptions, many of which altered the geometry sufficiently to nearly 

obviate the benefits of the method. In addition, boundary conditions produced by the 

assumption of point connectivity on Lagrangian surfaces translated to incorrect fluid 

flows near surfaces during CFD simulations. 

The new Eulerian method completed for this thesis work dispenses with many of 

the limitations that are inherent in the Lagrangian approach, giving more realistic 

geometries and boundary conditions. The weaknesses of this approach lie mostly with the 

assumptions made regarding motion; in the optical flow calculations, objects are assumed 
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to move along their intensity gradients. The constraint of smoothness, combined with the 

nonlinear iterative path taken by the method of Brox et al. in reaching a solution, give 

optical flow vector components that are not constrained to follow image gradients 

everywhere, but there are still problems with assessing purely tangential boundary motion 

correctly, particularly in regions that have little or no curvature. 

The other potential limitation of the Eulerian method lies with the morphing 

process. The elastic force model used to move a level set curve between frames does not 

conserve curve length, and produces errors where curves cross each other at steep angles. 

In the case of the American eel, this created the effect of shortening the tail between 

image frames, leading to a level set motion that does match its boundary conditions in 

some isolated areas. 

Even with these problems, however, the Eulerian method developed here is 

distinguished by its elegance; implementation is straightforward and entirely (i.e. all the 

way from the image domain to flow computations) follows the level set framework 

employed in the CFD code nicely. There is no tedious point generation algorithm, no 

surface smoothing, no assumptions regarding point correspondence and no need to 

convert from an Eulerian image field to a Lagrangian surface mesh and then back to an 

Eulerian field again. And absent the point-based assumptions made in the previous 

method, the new method produces results that appear to be more plausible, particularly 

with respect to boundary conditions. 

Although the idea of Eulerian image based modeling has been demonstrated here 

using a low-resolution and relatively simple video of an eel swimming, the real power of 

the method lies in its promise with regard to extending to 3-D moving images obtained 
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through modalities like ultrasound. Modeling an organ system such as the intestine 

functionally in 3-D would be extremely difficult, perhaps impossible, and meshing its 

surface with a set of points based on imagery would be a tedious, difficult process. 

However, if we can combine the denoising and segmentation algorithms outlined in 

Chapter 4 with the nonlinear optical flow method of Brox et al. used to set boundary 

conditions and morphing used to generate intermediate geometries, a great number of 

possibilities suddenly present themselves. Thus, at the culmination of this work, we have 

arrived at a paradigm that presents many avenues of extension to capture a wide range of 

moving boundary phenomena that occur in biofluid mechanics and other applications. 
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Figure 7-1. Morphing level set contours by optical flow alone proved inadequate for the 

purposes of image-based CFD modeling. In regions where optical flow 

vectors are oriented normal to level set boundaries (pixel columns 346-351), 

the motion is consistent. However, large jumps in position from one image 

frame to the next occur where the optical flow vectors are nearly orthogonal to 

the normal vectors (appearing most dramatically near the tip of the eel’s tail). 
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Figure 7-2. A close-up view of the tail tip region being moved with the optical flow 

vector field through three image frames. 
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Figure 7-3. Image paths taken through a higher dimensional function space: (A) linear 

interpolation from a source image to a target image; (B) Linear interpolation 

between a source image and a target image to get an intermediate transition 

image; (C) A transition image resulting from a nonlinear metric comparing a 

source and target image. (Figures taken from [88].) 
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Figure 7-4. Blending by interpolation between a source image (A) and a target image (B) 

results in ―ghosting,‖ a phenomenon in which the source image appears to 

fade out as the target image fades in (C-E). Figures taken from [88]. 
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Figure 7-5. Morphing the level set using the elastic force model. 
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Figure 7-6. A close-up view of the tail tip region being moved with the elastic force 

model through three image frames. 
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Figure 7-7. Exponential decay of the elastic force through the morphing process required 

sampling at exponentially increasing time intervals in order to produce a 

constant morphing motion. 
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Figure 7-8. Position in the flow time scale is cast as a fraction between two ordered 

frames, which in turn gives the number of morphing steps required to update 

the image to a new position according to the root-mean-squared distance 

metric. 
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Figure 7-9. The force generated by the elastic model is directly proportional to the 
distance separating the initial and final contour configurations, resulting in a 
non-uniform blend from one state to the next (for instance, no motion occurs 
where the contours cross). 
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Figure 7-10. Contours of vorticity plotted through one complete tail beat; St = 0.3 
(Eulerian method). 
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Figure 7-11. Contours of vorticity plotted through one complete tail beat; St = 0.5 
(Eulerian method). 
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Figure 7-12. Contours of vorticity plotted through one complete tail beat; St = 0.7 
(Eulerian method). 
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Figure 7-13. Contours of vorticity: (A) St = 0.3; (B) St = 0.5; (C) St = 0.7 (Eulerian 
method). 
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Figure 7-14. Contours of y-velocity: (A) St = 0.3; (B) St = 0.5; (C) St = 0.7 (Eulerian 
method). 
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Figure 7-15. Contours of x-velocity: (A) St = 0.3; (B) St = 0.5; (C) St = 0.7 (Eulerian 
method). 
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Figure 7-16. Wake structures produced at each Strouhal number by the original 

Lagrangian method (A-C) and the new Eulerian method (D-F) differed 

considerably, due to differences in boundary conditions. 
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Figure 7-17. The surface geometry of the eel’s tail was modeled much more accurately 
by the new Eulerian method (B) than by the Lagrangian method (B). Interface 
velocity vectors are quite different between the two cases, appearing to be 
correct in (B) and unphysical in (A).  
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Figure 7-18. Surface velocity vectors along the eel’s tail region produced by the 
Lagrangian method (A) and the Eulerian method (B); the vectors in (B) are in 
close agreement with observed motion, while the vectors in (A) make no 
physical sense.  

A 

B 



www.manaraa.com

363 
 

 

Figure 7-19. Plots of vorticity shed from the eel’s tail, produced by the Lagrangian 
method (A) and the Eulerian method (B); the vorticity magnitude is higher at 
the tail in (A), due to the presence of unphysical surface vectors increasing 
shear in that case, and thus the two cases produce wake structures that are 
quite different.  
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Figure 7-20. A comparison of the eel surface geometries produced by the Lagrangian 
method (A) and the Eulerian method (B) clearly shows the greater fidelity 
with which the new method is able to represent the imaged surface. 
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Figure 7-21. The eel’s nose modeled with the Lagrangian point-based method (A) and the 
new Eulerian method (B), again illustrating the superior fidelity maintained by 
(B) with respect to the eel’s imaged geometry. These geometrical differences, 
along with the incorrect boundary conditions calculated by method (A) 
produced different surface flow conditions, which show up clearly in the wake 
structures.  
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Figure 7-22. Instantaneous drag coefficients measured by control volume analysis during 
one complete tail beat (Eulerian method). 
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Figure 7-23. A comparison of the average drag coefficients measured by control volume 
analysis in the Lagrangian and Eulerian models. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1 A Summary of the Present Work 

 

Image based modeling is attractive because of its potential to generate accurate 

descriptions of complex objects in a relatively simple manner. The purpose of a model is 

to elucidate some phenomenon that occurs in the physical world, with the model’s degree 

of fidelity often dependent upon its degree of complexity.  

Geometric models can be difficult to create with mathematical functions, 

especially when the thing being modeled exhibits highly complicated shapes or patterns 

of motion. In Chapter 2 of this thesis, mathematically defined moving boundaries were 

shown to effect highly tortuous fluid flow patterns in some 2-D channel flows, which led 

to rapid mixing. Mixing is of great interest to engineering and biological sciences, as it is 

prevalent in many important phenomena such as chemical reactions, pollutant transport, 

homogenization, heat transfer, digestion, etc. Indeed, the models described in Chapter 2 

were inspired by questions about mechanisms observed in the human antro-duodenal 

junction that have not been answered to complete satisfaction. And, some insightful 

results were achieved with the use of those simple geometries. However, modeling the 

human GI tract and its concerted kinematic actions, even over a small portion of it, with 

fidelity, would require mathematical surface building using functions that are of a much 

higher order of complexity and with a great deal of built-in uncertainty. 

Chapter 3 offered a way around this difficulty by offering the creation of 

geometric models from images as an alternate route. Imaged objects were used to 
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generate curves describing their outlines, and the curves were populated with a set of 

Lagrangian points, thus allowing them to be tracked spatially and temporally, completing 

the physical description. This method was applied to a video sequence of an American 

eel swimming in an experimental apparatus, and to another video sequence of a guinea 

pig duodenal segment contracting in vitro., exemplifying both internal and external fluid 

flow behaviors, respectively. This method turned out to nicely facilitate the generation of 

these models, which would have otherwise been a difficult task using mathematical 

functions alone. However, the Lagrangian point-based nature of this method came with 

its own unique set of problems. One-to-one point correspondence was required to 

construct surface velocities on the objects, which required equal spacing of the points on 

the surface curves regardless of how the curves were actually evolving. This had the 

undesirable effect of introducing unphysical surface velocities, which in turn led to 

incorrect boundary conditions in the fluid flow environment. Point placement and 

tracking also turned out to be highly tedious and required compromises between accuracy 

and reliability, such as limiting the search for interface crossings to a single direction that 

had to be defined by the user a priori based on image characteristics in order for the point 

population process to proceed in a robust fashion. 

Work outlined in the rest of the chapters was conducted thenceforth with the 

primary goal of dispensing of the need for Lagrangian points, and thus hopefully averting 

the multitude of problems encountered with them. Some crude segmentation and 

denoising techniques were introduced in Chapter 3, and sufficed for the purposes of those 

models because the point smoothing that followed Lagrangian surface meshing generated 

acceptable, if not ideal, geometries. However, such surface smoothing would not be 



www.manaraa.com

370 
 

possible in the new Eulerian framework. This meant that all image smoothing would have 

to take place before segmentation and the subsequent conversion to a level set surface 

description. So, in preparation for the transition away from points, denoising and 

segmentation were revisited in detail in Chapter 4, with a full investigation of denoising 

techniques provided therein. This allowed for the selection of a suitable image denoising 

method for our purposes, in turn allowing for the creation of smooth segmentation 

contours amenable to generating well-behaved level set descriptions of imaged objects. 

 With object boundaries cast in the level set formulation, an Eulerian description 

of their locations in space at pixel resolution was effected for each image frame in the 

sequence, nearly completing a coarsely defined description of the model in space and 

time. Now the task was to find a way to apply boundary conditions—the final missing 

piece of a complete physical description—to the modeled surfaces, and to increase the 

level of spatio-temporal resolution so that they could be coupled with a flow solver for 

CFD simulations. 

To this end, the computer vision technique of optical flow was introduced in 

Chapter 5. Because optical flow is designed to deduce object motion based on changing 

brightness patterns in image sequences, it was felt to hold promise in providing the 

missing Eulerian boundary condition information being sought for the level set 

representations of segmentation curves discussed in Chapter 4. A survey of optical flow 

methods reported in the literature over the past 30 years was performed, showing recently 

developed nonlinear methods to offer a potential for highly accurate descriptions of 

imaged object motions. 
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In Chapter 6, the optical flow method algorithms described in Chapter 5 were 

applied, first to a set of synthetically created test images, then to a set of real images by 

revisiting the swimming American eel described in Chapter 3, and finally applying the 

methods to flowing particle fields and PIV imagery. The nonlinear optical flow method 

proved to be quite promising with respect to its ability to produce accurate boundary 

motions in an Eulerian setting; the errors produced by it were quite low in the majority of 

test cases, particularly near object boundaries where a small error was of greatest 

importance. However, attempts to advect the eel image from one frame in the sequence to 

another under the influence of optical flow vectors ultimately failed, despite the 

seemingly high accuracy of the optical flow solution. This was found to be a problem not 

with the optical flow field itself, but with the assumption that optical flow velocities 

project onto image gradients when invoking the standard advection method. Thus, optical 

flow vectors were retained as a means to supply boundary conditions, but an alternative 

method needed to be developed for effecting imaged object motion at a sub-frame-rate 

scale.  

Particle and PIV results were mixed, with the nonlinear optical flow method 

giving feasible vector fields in some cases, but completely unrealistic results in others. In 

particular, image sequences fraught with large average intensity variations between 

frames, or with large radial intensity gradients within frames, gave poor results that could 

not compete with existing standard PIV methods. However, a significant amount of work 

remains to be done with regard to tuning optical flow parameters to match the demands 

of individual image sequences, as well as investigating the inclusion of physically 
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significant effects in the constraint equations applied to the optical flow minimization 

functional. 

Because of the problems encountered when trying to move boundaries using 

optical flow, Chapter 7 began with a discussion of image morphing, giving an overview 

of level set-based morphing methods that were felt to match well with the framework 

being developed here. In the end, a morphing method based on elastic force modeling 

was decided upon, as it gave the best results out of the methods tested in the form of 

smooth, consistent interface motion. Now the facility was in place for describing motion 

on arbitrarily fine time intervals, even when presented with relatively coarse image 

acquisition rates in video sequences. 

The remainder of Chapter 7 was concerned with spatially mapping level set 

representations of imaged objects onto flow meshes of arbitrary scale, and simulating 

fluid flow around them. Bilinear interpolation was used to map level set information from 

a morphed image onto its corresponding CFD mesh, and optical flow vectors were 

mapped onto the resulting immersed interface in order to supply boundary conditions to 

the flow. Applied to the swimming American eel, the results turned out to be quite 

different from those obtained using the Lagrangian method outlined in Chapter 3; wake 

structures were markedly different between the two cases. The greatest contribution to 

this disparity was likely the large difference in the quality of surface velocity information. 

While the Lagrangian method consistently gave unphysical surface vectors resulting from 

the continuous redistribution of points to maintain connectivity, the Eulerian method 

relied on the displacement of brightness patterns to describe surface motion. Optical flow 
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vectors were in agreement with observed motion, whereas Lagrangian surface vectors 

generally did not correlate with observed motion at all. 

8.2 Scope of Future Work and Possible Extensions 

 

While the overall goals envisioned at the start of this thesis work were achieved, 

there is much left to be investigated along the paths set forth; many more questions arose 

along the way. Denoising methods deserve a closer look in the way of further examining 

the optimization of parameters involved with methods such as SRAD. Wavelet based 

denoising methods also deserve a great deal more investigation, through the use of 

different wavelet types, and perhaps through different methods of filtering and diffusing 

in wavelet space. 

The nonlinear optical flow techniques employed here were found to work quite 

well, but coupling them with level set segments along the lines of Amiaz and Kiryati [9] 

would probably improve accuracy further, and would not require much extension beyond 

what is already in place. Even the algorithm based on the work of Brox et al. that is 

already in place might be improved through one-way coupling with the image segment; 

the optical flow field could be solved independently inside and outside of the 

segmentation curve, possibly improving the quality of the solution in both places. 

Although the particle results were mediocre, only a small range of tunable 

parameters was investigated to get the optical flow solutions provided herein, and so it is 

likely that a great deal of improvement could be made in the direction of particle vector 

quantification. While the large amount of user input required for optimizing optical flow 

for PIV images in this way may appear to make the method less attractive than standard 
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correlation-based methods already well established, optical flow does offer two major 

advantages over standard PIV algorithms. First, unlike correlation-based methods, which 

use-multiple pixel windows to obtain vector fields that are significantly coarser than 

image resolution, optical flow provides a vector for each pixel in an image sequence. This 

can be of great use when trying to quantify wall shear flows or other phenomena that are 

marked by large velocity gradients. Second, optical flow has the ability to quantify 

motion everywhere in an image domain, including regions where there are no particles. 

This opens up the possibility of quantifying fluid interactions with moving boundaries, as 

both surface motion and particle motion can be tracked simply by finding the 

displacements of imaged brightness patterns. Of course, as was seen, this requires high-

quality images that are free of large overall intensity variations in order to produce a 

reliable result. However, introducing physically meaningful metrics into the constraint 

equations may well provide the robustness required to overcome this present limitation in 

the method. 

One of the most promising outlooks for the methodology outlined here lies in the 

realm of 4-D image based modeling. For example, 3-D ultrasound data sequences in time 

could be denoised and segmented using the methods described in Chapter 4, then a 3-D 

optical flow field could be calculated between the resulting smooth image data to 

generate a complete physical description of moving level set surfaces. Such tools would 

be powerful, indeed, and with a little extension to this work and given enough 

computational power, should be possible to achieve in relatively short order. 
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8.3 Contributions of the Present Thesis Work 

 

Work performed for this thesis represents, to our knowledge, the first of its kind, 

coupling the computer vision methodologies of denoising, segmentation, optical flow, 

and morphing with a level set framework to provide a seamless transition from video 

images to CFD simulations—all within an Eulerian setting that completely dispenses 

with point placement and surface meshing. The facility to model complex moving 

boundaries in a simple, straightforward fashion has thus been established. Ongoing work 

in the direction of extending these methods to 3-D (still) and 4-D (moving) data sets will 

allow for modeling highly complex surfaces, such as organ systems or microstructures 

imaged via X-ray CT or ultrasound, with a level of detail that might not be possible to 

achieve any other way. Thus, the work presented in this thesis holds great potential for 

application to a wide array of problems in biofluid mechanics, hydrodynamics with 

moving boundaries (as in swimming and flapping flight) and computation in the presence 

of complex imaged microstructures.   
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APPENDIX A.  THE EULER-LAGRANGE EQUATIONS [15, 75-76] 

According to the Calculus of Variations, minimization of the functional 
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Expanding   yields 
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The resulting Euler-Lagrange equations are then 
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APPENDIX B.  ESTIMATING DERIVATIVES (1
ST

 ORDER) AND 

LAPLACIANS [15] 

Forward differencing for estimating spatial and temporal derivatives: 
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Flow velocity Laplacian estimates: 
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APPENDIX C.  THE OPTICAL FLOW FIELD EQUATIONS 

The Euler-Lagrange equations can be recast in a more convenient form for 

obtaining solutions to u and v [15]: 

 (     
 )           ̅       (C.1) 
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 )     ̅      . (C.2) 

In matrix form, these become 
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1  6

   ̅      
   ̅      

7. (C.3) 

At this stage, Cramer’s rule can be used to easily find solutions for u and v [77]: 

   
     

    
 (C.4) 

   
     

    
. (C.5) 

A is the coefficient matrix, and A1, A2 are defined below. 
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 7 (C.6) 
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Determinants are calculated to be 
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 ) (C.9) 
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               |
     

    ̅      
       ̅      

| 

   (   ̅    
  ̅       ̅      ).   (C.11) 

Applying Cramer’s rule gives u and v as 

 (     
    

 )  (     
 ) ̅       ̅       (C.12) 

 (     
    

 )  (     
 ) ̅       ̅       (C.13) 

Further algebraic manipulation leads to 

 (     
    

 )(   ̅)     (   ̅     ̅    ) (C.14) 

 (     
    

 )(   ̅)     (   ̅     ̅    ) (C.15) 

and finally, 
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APPENDIX D.  CENTRAL DIFFERENCING APPROXIMATIONS IN 

THE HORN-SCHUNCK FORMULATION 

Central differencing for estimating spatial and temporal derivatives: 
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APPENDIX E.  THE MULTIGRID METHOD [14] 

For illustrative purposes, a linear operator is defined as acting on the flow velocity 

components u and v.   

   (   )    (       )       (E.1) 

   (   )    (       )       (E.2) 

Simplified as such, the Euler-Lagrange equations can be written in vector form. 

 [
  (   )

  (   )
]  6

       
       

7 (E.3) 

From here, the multigrid algorithm proceeds as follows: 

i) Start with an initial guess solution ( ̂  ̂). 

ii) Use the gradient descent equations for some n1 iterations to refine ( ̂  ̂) 

closer to their actual solution. 

iii) Compute the residual r on the refined initial guess: 

   [
  ( ̂  ̂)

  ( ̂  ̂)
]  6

      
      

7. (E.4) 

iv) Down sample the residual r to obtain rcoarse, the residual on a coarse mesh. 

v) Solve for functions fc and gc on the coarse mesh, where fc and gc satisfy 

         6
         (     )

         (     )
7.  (E.5) 

vi) Interpolate fc and gc onto the original grid to get f and g. 

vii) Add f and g to the refined guess ( ̂  ̂): 

  ̂   ̂     (E.6) 

  ̂   ̂   .  (E.7) 

viii) Refine ( ̂  ̂) a final time using gradient descent for n2 iterations. 
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Coarsening is performed recursively until the resulting linear equation may be 

solved exactly.  Then, the grid is recursively refined, injecting each coarse level solution 

to the next finer level until the original grid density is reached once again.  At this point, 

the residual is checked for convergence; the process is repeated with the new solution as 

the initialization if the residual remains too high.   
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APPENDIX F.  NUMERICALLY APPROXIMATING THE TWO-

PHASE OPTICAL FLOW FIELD EQUATIONS [9] 

Linearization and numerical discretization of the two-phase Euler-Lagrange 

equations is supplied in the vein of Brox et al. as follows: 
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In the foregoing equations,    is a numerical approximation to the Heaviside 

function: 

   ( )  
 

 
0  

 

 
      .

 

 
/1, (F.5) 

where ∆ represents Eulerian grid spacing.  After iterating in k, 1
st
 order Taylor 

expansion is used to approximate   
     

 in the same manner as before. 
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         (F.8) 

                   (F.9) 

                  . (F.10) 

Finally, making use of the ―data term robustness‖ and ―smoothness diffusivity‖ 

definitions put forth by Brox et al. (Equations 1.52 and 1.53), and utilizing their second 

nested fixed-point iteration scheme to linearize   , the final form of the Euler-Lagrange 

equations becomes 
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and 
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APPENDIX G.  THE DISCRETE LEVEL SET EVOLUTION 

EQUATION FOR 2-PHASE OPTICAL FLOW [9] 

Adopting the notations of Chan and Vese [13], 
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Discretization of brightness and smoothness terms, respectively, gives 
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Finally, the discrete two-phase level set equation is 
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APPENDIX H. COMPUTING OPTICAL FLOW DERIVATIVES AND 

MATRIX COEFFICIENTS 

 

Figure H1. The stencil used to compute derivatives: A pixel (usually considered to be of 
unit area, but of dimension    by    more generically) is shown shaded in 
grey, with pixel center values labeled using uppercase letters and pixel face 
values labeled with lowercase letters. 

All differencing approximations used for the optical flow field computations follow 

standard CFD methods. Away from image boundaries, derivatives are computed using 

central differencing: 

First derivatives- 
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 𝑥 
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Second derivatives- 

     
         

(  ) 
 (H.3) 
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  (H.4) 

Mixed derivatives- 

     
               

     
 (H.5) 

On domain edges, one-sided difference approximations are used: 

East boundary- 
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West boundary- 
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North boundary- 
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South boundary- 
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 (H.18) 

In the domain corners, one-sided differencing is used in two directions: 

Northeast corner- 
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Northwest corner- 
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Southeast corner- 
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Southwest corner- 
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 (H.35) 

Pixel face values are simply taken as the average of the pixel-center value    and that of 

its neighbor in the appropriate direction: 

    
     

 
 (H.36) 
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When there is no neighboring pixel in a given direction, as is the case on image 

boundaries, the face value in that direction is taken to be equal to   . 
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